摘要:
The process described here has made it possible to obtain boron-containing silicates having a zeolitic structure which display negligible DME and C8 selectivities combined with high activities when used as catalysts for the dissociation of MTBE.
摘要:
The present invention relates to a process for preparing a catalyst which, in a formal sense, comprises 0.1 to 20% by mass of alkali metal and/or alkaline earth metal oxide, 0.1 to 99% by mass of oxide and 0.1 to 99% by mass of silicon dioxide, which is characterized in that it aluminum comprises the steps of treating an aluminosilicate with an aqueous alkali metal and/or alkaline earth metal salt solution under acidic conditions and calcining the aluminosilicate treated with aqueous alkali metal and/or alkaline earth metal salt solution, and to a catalyst which is obtainable by this process and, in a formal sense, comprises alkali metal and/or alkaline earth metal oxide, aluminum oxide and silicon dioxide, which is characterized in that the catalyst, in a formal sense, has a content of alkali metal and/or alkaline earth metal oxides of 0.5 to 20% by mass, a content of aluminum oxide of 4 to 30% by mass and a content of silicon dioxide of 60 to 95% by mass, and to the use of this catalyst in a process for preparing isoolefins having 4 to 6 carbon atoms by catalytic gas phase cleavage of tertiary alcohols or alkyl tert-alkyl ethers.
摘要:
A process for the dissociation of methyl tert-butyl ether (MTBE), which includes at least a) catalytic dissociation of MTBE which is present in two streams I and VII over a catalyst to give a dissociation product II, b) separation by distillation of the dissociation product II obtained in a) into an overhead stream III containing more than 90% by mass and a bottom stream IV containing diisobutene, MTBE and more than 80% of the methanol present in the dissociation product II, c) separation by distillation of the bottom stream IV obtained in b) into a methanol-containing bottom stream V, a side stream VI containing diisobutene, methanol and MTBE and an overhead stream VII containing MTBE and methanol and d) recirculation of the overhead stream VII to a).
摘要:
The present invention relates to mixed oxide compositions, to the use thereof as a catalyst for cleavage of alkyl tert-alkyl ethers or tertiary alcohols, and to a process for cleaving alkyl tert-alkyl ethers or tertiary alcohols to isoolefins and alcohol or water.
摘要:
The present invention relates to a process for preparing unsaturated aldehydes or unsaturated carboxylic acids by heterogeneous catalytic gas phase oxidation of unsaturated or saturated hydrocarbons, comprising the process steps of: i) providing a gas mixture comprising a saturated hydrocarbon and catalytically dehydrogenating the saturated hydrocarbon in the gas phase to obtain a gas mixture comprising an unsaturated hydrocarbon in a dehydrogenation reactor having a dehydrogenation catalyst material; or ii) providing a gas mixture comprising oxygen and an unsaturated hydrocarbon; iii) catalytically oxidizing the unsaturated hydrocarbon obtained in process step i) or provided in process step ii) in the gas phase to obtain a gas mixture comprising an unsaturated aldehyde in a first oxidation reactor having a first oxidation catalyst material; wherein at least one of the reactors selected from the dehydrogenation reactor, the first oxidation reactor and the second oxidation reactor comprises at least one foam body.
摘要:
Silicon-aluminum mixed oxide powder having a weight ratio of (Al2O3/SiO2)ttl in the total primary particle of from 0.003 to 0.05, a weight ratio (Al2O3/SiO2)surface of the primary particles in a surface layer having a thickness of about 5 nm which is less than in the total primary particle and a BET surface area of from 50 to 250 m2/g.It is prepared by igniting one or more silicon compounds selected from the group consisting of CH3SiCl3, (CH3)2SiCl2, (CH3)3SiCl and (n-C3H7)SiCl3, a hydrolysable and oxidizable aluminum compound, at least one fuel gas and air and burning the flame into a reaction chamber, subsequently separating the solid from gaseous materials and subsequently treating the solid with water vapor.The silicon-aluminum mixed oxide powder can be used as catalyst.
摘要:
The problem addressed by the present invention is that of specifying a process for producing aldehydes which, compared with conventional hydroformylation, cuts CO2, which utilises alternative sources of raw materials, and which has no need for a step of providing carbon monoxide.This problem is solved by processes comprising the following steps: a) providing at least one alkane; b) photocatalytically dehydrogenating the alkane to a mixture comprising at least one olefin and hydrogen; c) adding carbon dioxide and hydrogen to the mixture; d) hydroformylating the olefin to at least one aldehyde. More particularly, n-butane is initially dehydrogenated photocatalytically and the resulting 1-butene is reacted with CO2 in a hydroformylation to form valeraldehyde.The overall process exemplified for n-butane and CO2 is as follows: n-butane→1-butene+H2(photocatalytic dehydrogenation) 1-butene+CO2+2H2→valeraldehyde+H2O(hydroformylation with CO2)
摘要翻译:本发明解决的问题在于指定生产醛的方法,其与常规加氢甲酰化相比,切割利用替代原料源的CO 2,并且不需要提供一氧化碳的步骤。 该问题由包括以下步骤的方法解决:a)提供至少一种烷烃; b)将烷烃光催化脱氢成包含至少一种烯烃和氢的混合物; c)向混合物中加入二氧化碳和氢气; d)将烯烃加氢甲酰化至至少一种醛。 更具体地,正丁烷最初被光催化脱氢,所得1-丁烯在加氢甲酰化反应中与CO 2反应生成戊醛。 正丁烷和二氧化碳示例的总体方法如下:正丁烷 - > 1-丁烯+ H 2(光催化脱氢)1-丁烯+ CO 2 + 2H 2 - >戊醛+ H 2 O(用CO 2加氢甲酰化)
摘要:
A catalyst, useful in the preparation of isoolefins and containing 0.1 to 20% by mass of an alkali metal oxide, an alkaline earth metal oxide and mixtures thereof; 0.1 to 99% by mass of aluminum oxide; and 0.1 to 99% by mass of silicon dioxide, is prepared by a) treating an aluminosilicate with an aqueous alkali metal salt solution, an alkaline earth metal salt solution and mixtures thereof, under acidic conditions, to obtain a treated aluminosilicate; and b) calcining the treated aluminosilicate, to obtain the catalyst.
摘要:
The invention relates to a photoelectrochemical cell 100 for light-driven production of hydrogen and oxygen, especially from water or another electrolyte based on aqueous solution, having a photoelectric layer structure 1 and an electrochemical layer structure 2 in a layer construction 40, where—the photoelectric layer structure 1 for absorption of light 3 uninfluenced by the electrolyte 10 forms a front side 41 of the layer structure 40, and—the electrochemical layer structure 2, for accommodation of the electrolyte 10, forms a reverse side 42 of the layer construction 40, and—a conductive and corrosion-inhibiting coupling layer 13 forms electrical contact between the photoelectric layer structure 1 and the electrochemical layer structure 2 in the layer construction 40, where—the electrochemical layer structure 2 has an electrode structure of a front electrode 21 and an electrode structure of a rear electrode 22, between which is arranged an ion exchange layer 61 such that an integrated layer construction 40 is formed with the ion exchange layer 61 in contact with the electrode structure of the front electrode 21 formed for conversion of the electrolyte 10 and/or with the electrode structure of the rear electrode 22.
摘要:
Isobutene is prepared by a process in which a) an MTBE-containing stream I is separated by distillation into an MTBE-containing overhead stream II and a bottom stream III which comprises compounds having boiling points higher than that of MTBE; and b) the MTBE present in the overhead stream II is dissociated over a catalyst to give a dissociation product IV; wherein the stream I has a proportion of 2-methoxybutane (MSBE) of greater than 1000 ppm by mass, based on MTBE, and wherein the separation by distillation in step a) and/or the dissociation in step b) is carried out so that the dissociation product IV has a concentration of less than 1000 ppm by mass of linear butenes, based on a C4-olefin fraction.