Abstract:
An anti-corrosive coating and a preparation method therefor are provided. The method includes the following steps: (1) dispersing graphite and a modifier in water to prepare a pretreated graphite dispersion; (2) stripping and modifying the pretreated graphite dispersion obtained in step (1) to prepare a modified graphene dispersion; and (3a) mixing the modified graphene dispersion obtained in the step (2) with epoxy resin and a cationic photoinitiator, standing, carry out phase splitting, removing a water phase, further deeply removing water to obtain a graphene/epoxy resin mixture, and curing the obtained mixture to obtain the anti-corrosive coating. By means of a phase transfer method, the application of a modified graphene aqueous dispersion in resin can be realized without drying graphene first, so that uniform dispersion of modified graphene in epoxy resin can be ensured, and additionally, stacking of the modified graphene in the drying process can be avoided.
Abstract:
Crystalline NH4Be2BO3F2 or Be2BO3F (abbreviated as BBF) has nonlinear optical effect, is not deliquescent in the air, is chemically stable. They can be used in a variety of nonlinear optical fields and will pioneer the nonlinear optical applications in the deep UV band.
Abstract:
This disclosure provides an optical parametric oscillator, comprising, in a light path, a first lens, a laser crystal, a second lens, a nonlinear optical crystal, and a third lens in this order, wherein an optical parametric oscillation chamber is formed between the second lens and the third lens, and the nonlinear optical crystal is a monoclinic Ga2S3 crystal, the space group of the monoclinic Ga2S3 crystal is Cc, and the unit cell parameters are a=11.1 Å, b=6.4 Å, c=7.0 Å, α=90°, β=121°, γ=90°, and Z=4.
Abstract:
An ionic phosphorescent metal complex has a formula of [PtM3{(PR″2CH2)3P}(C≡CR)(C≡CR′)(μ-Cl)]2+An−2/n. M is selected from Au(I) and Ag(I). R, R′ and R″ are identical or different, and are independently selected from alkyl, alkenyl, alkynyl, aryl, and heteroaryl. Each of the alkyl, alkenyl, alkynyl, aryl, and heteroaryl may be substituted with one or more substituents selected from alkyl, alkenyl, alkynyl, alkoxy, amino, halogen, halogenated alkyl, aryl, and heteroaryl. The substituent is optionally further substituted with one or more of the following groups: alkyl, alkenyl, alkynyl, alkoxy, amino, halogen, halogenated alkyl, aryl, and heteroaryl. An− is a monovalent or divalent anion. n is 1 or 2. μ- represents bridging linkage. The organic light-emitting diode prepared by using the complex as the light-emitting layer dopant has an external quantum efficiency of 10% or more, and can be applied to the fields of flat panel display and daily lighting.
Abstract:
Provided is an ionic type phosphorescent metal complex with a racemization structure, a preparation method therefor and a use thereof. The structure of the complex is [PtAg2{rac-(PPh2CH2PPhCH2—)2}(C≡CR)2(PR′3)2]2+An−2/n or [PtAg2{meso-(PPh2CH2PPhCH2—)2}(C≡CR)2(PR′3)(μ-X)]+mAm−, wherein R is the same or different and is independently selected from alkyl, aryl, heteroaryl, and heteroaryl aryl; R′ is the same or different and is independently selected from alkyl, aryl, and heteroaryl; the alkyl, aryl, and heteroaryl can be substituted by one or more substituents which are selected from alkyl, alkenyl, alkynyl, alkoxy, amino, halogen, halogenated alkyl, and aryl; X is halogen; Am− and An− are monovalent or bivalent anions; and m or n is 1 or 2. The present invention also relates to an organic light emitting diode, a preparation method therefor and use thereof. The organic light emitting diode prepared by taking the phosphorescent metal complex of the present invention as a luminous layer dopant has high-performance organic electroluminescence and can be applied to panel display.
Abstract:
The catalyst in this present application includes a support and an active component dispersed on/in the support; wherein the support is at least one selected from inorganic oxides and the support contains macropores and mesopores; and the active component includes an active element, and the active element contains an iron group element. As a high temperature stable catalyst for methane reforming with carbon dioxide, the catalyst can be used to produce syngas, realizing the emission reduction and recycling utilization of carbon dioxide. Under atmospheric pressure and at 800° C., the supported metal catalyst with hierarchical pores shows excellent catalytic performance. In addition to high activity and good selectivity, the catalyst has high stability, high resistance to sintering and carbon deposition.
Abstract:
The present invention relates to the field of nonlinear optical crystal materials and provided herein a Li4Sr(BO3)2 compound, a Li4Sr(BO3)2 nonlinear optical crystal as well as preparation method and use thereof. The Li4Sr(BO3)2 nonlinear optical crystal has a second harmonic conversion efficiency at 1064 nm of about two times that of a KH2PO4 (KDP) crystal, and an UV absorption cut-off edge less than 190 nm. Furthermore, the crystal did not disintegrate. By flux method with Li2O, Li2O—B2O and Li2O—B2O3—LiF used as flux agent, large-size and transparent Li4Sr(BO3)2 nonlinear optical crystal can grow. The Li4Sr(BO3)2 crystal had stable physicochemical properties, moderate hardness, and was easy to cut, processing, preserve and use. Therefore it can be used for preparing nonlinear optical devices and thus for developing nonlinear optical applications in the ultraviolet and deep-ultraviolet band.
Abstract:
A medical implant porous scaffold structure having low modulus, wherein said structure is formed by multiple basic units superposed sequentially along the three-dimensional directions in three-dimensional space, each of the basic units is composed of a quadrangular prism or hexagonal prism having central interconnected pores encircled by four or six side walls, each of the side walls is composed by a “X-type” frame structure formed by two crossed ribs, and the central interconnected pores of the adjacent basic units arranged along the axis direction of the quadrangular prism or the hexagonal prism are interconnected to each other. The structure could not only reduce the modulus of the implant, make the modulus of the implant and strength achieve an ideal match, improve the configuration of traditional metal implants to optimize the distribution of mechanical and weaken the stress shielding effect; but also has a regular interconnected pores structure which is conducive to bone tissue in-growth, and can increase mutual locking of bone tissue and implant and shorten the recovery time of patients.
Abstract:
This disclosure provides a second harmonic generator and an optical parametric oscillator, the second harmonic generator and the optical parametric oscillator comprise one or more nonlinear optical frequency conversion crystal and a pump laser source, the nonlinear optical frequency conversion crystal is a monoclinic Ga2S3 crystal, the space group of the monoclinic Ga2S3 crystal is Cc, and the unit cell parameters are a=11.1 Å, b=6.4 Å, c=7.0 Å, α=90°,β=121°, γ=90°, and Z=4.
Abstract:
A GaN based LED epitaxial structure and a method for manufacturing the same. The GaN based LED epitaxial structure may include: a substrate; and a GaN based LED epitaxial structure grown on the substrate, wherein the substrate is a substrate containing a photoluminescence fluorescent material. The photoelectric efficiency of the LED epitaxial structure is enhanced and the amount of heat generated from a device is reduced by utilizing a rare earth element doped Re3Al5O12 substrate; since the LED epitaxial structure takes a fluorescence material as a substrate, a direct white light emission may be implemented by such an LED chip manufactured by the epitaxial structure, so as to simplify the manufacturing procedure of the white light LED light source and to reduce production cost. The defect density of the epitaxial structure is reduced by firstly epitaxial growing, patterning the substrate and then laterally growing a GaN based epitaxial structure.
Abstract translation:GaN基LED外延结构及其制造方法。 GaN基LED外延结构可以包括:衬底; 以及在衬底上生长的GaN基LED外延结构,其中衬底是含有光致发光荧光材料的衬底。 通过利用稀土元素掺杂的Re 3 Al 5 O 12衬底,增强了LED外延结构的光电效率,并降低了器件产生的热量; 由于LED外延结构采用荧光材料作为基板,所以可以通过由外延结构制造的这种LED芯片实现直接白光发射,从而简化白光LED光源的制造过程并减少生产 成本。 通过首先外延生长,图案化衬底,然后横向生长GaN基外延结构来减小外延结构的缺陷密度。