Abstract:
A broadband light source device for creating broadband light pulses includes a hollow-core fiber and a pump laser source device. The hollow-core fiber is configured to create the broadband light pulses by an optical non-linear broadening of pump laser pulses. The hollow-core fiber includes a filling gas, an axial hollow light guiding fiber core configured to support core modes of a guided light field, and an inner fiber structure surrounding the fiber core and configured to support transverse wall modes of the guided light field. The pump laser source device is configured to create and provide the pump laser pulses at an input side of the hollow-core fiber. The transverse wall modes include a fundamental transverse wall mode and second and higher order transverse wall modes.
Abstract:
A broadband light source device for creating broadband light pulses includes a hollow-core fiber and a pump laser source device. The hollow-core fiber is configured to create the broadband light pulses by an optical non-linear broadening of pump laser pulses. The hollow-core fiber includes a filling gas, an axial hollow light guiding fiber core configured to support core modes of a guided light field, and an inner fiber structure surrounding the fiber core and configured to support transverse wall modes of the guided light field. The pump laser source device is configured to create and provide the pump laser pulses at an input side of the hollow-core fiber. The transverse wall modes include a fundamental transverse wall mode and second and higher order transverse wall modes.
Abstract:
Disclosed is an ultrafast optical switching device based on black phosphorus, including a first channel to generate a first laser which is a continuous wave of a first wavelength, a second channel to generate a second laser which is a continuous wave of a second wavelength different from the first wavelength, a modulator to modulate the second laser generated by the second channel into a pump signal, a first and a second wavelength tunable filters to change wavelengths of the first laser and the second laser, respectively, a directional coupler to couple the first laser and the second laser, and an optical element to control the first and second lasers coupled by the directional coupler by means of nonlinearity and an evanescent field of black phosphorus. Accordingly, volume and size of an ultrafast optical switching device may be reduced, and a data processing rate may be improved.
Abstract:
This disclosure provides a second harmonic generator and an optical parametric oscillator, the second harmonic generator and the optical parametric oscillator comprise one or more nonlinear optical frequency conversion crystal and a pump laser source, the nonlinear optical frequency conversion crystal is a monoclinic Ga2S3 crystal, the space group of the monoclinic Ga2S3 crystal is Cc, and the unit cell parameters are a=11.1 Å, b=6.4 Å, c=7.0 Å, α=90°,β=121°, γ=90°, and Z=4.
Abstract:
A method and an apparatus are provided for producing SuperContinuum (SC) light for medical and biological applications is provided. Pulses are focused from a laser system into at least one of a pressurized cell and one or more fibers. A pump pulse is converted into the SC light at a specified rate of repetition. The SC light is applied at the specified rate of repetition to tissue for medical and biological applications.
Abstract:
A method of manufacturing a wavelength conversion element can control a formation process of a polarization inversion structure with single crystalline magnesium-doped lithium niobate having a congruent composition, and can stably manufacture wavelength conversion elements having high conversion efficiency. The method involves forming periodic electrodes on the +z face of an MgLN substrate and forming an opposite electrode on the −z face of the MgLN substrate; heat-treating the substrate after forming the periodic electrodes and the opposite electrode; and applying a pulsed electric field between the periodic electrodes and the opposite electrode while holding the MgLN substrate at a temperature of 100° C. or higher. The wavelength conversion element has a polarization inversion structure formed by applying an electric field to a heat-treated MgLN substrate.
Abstract:
A light source device includes a light emitting element and a wavelength conversion device. The wavelength conversion device includes a stationary member, a moveable carrier made of a transparent material carrying one or more wavelength conversion materials and moveable relative to the stationary member, and a stationary first filter. The first filter is fixed on the stationary member and disposed adjacent the moveable carrier. The excitation light from the light emitting element passes through the first filter and illuminates the wavelength conversion materials on the moveable carrier. The wavelength conversion materials convert the excitation light into converted light as the output of the light source device. The size of the first filter is smaller than the size of the moveable carrier and smaller than a carrying area of the moveable carrier that carries the wavelength conversion material. A wavelength conversion method using the wavelength conversion device is also described.
Abstract:
A method and an apparatus are provided for producing SuperContinuum (SC) light for medical and biological applications is provided. Pulses are focused from a laser system into at least one of a pressurized cell and one or more fibers. A pump pulse is converted into the SC light at a specified rate of repetition. The SC light is applied at the specified rate of repetition to tissue for medical and biological applications.
Abstract:
A slow light optical dye doped polymer device for slowing the group velocity of an optical signal. In an embodiment, the slow light dye doped polymer device is a slow group velocity optical/near infrared (NIR) device formed of a substrate supporting a dye doped polymer waveguide layer sandwiched between two optically constraining polymer cladding layers. The waveguide layer includes at least one waveguide which supports Moiré grating slow light structures for slowing the group velocity of an optical signal traveling therein. In another embodiment, the slow light optical polymer device includes the slow group velocity optical portion and a slow phase velocity electrical portion. The slow phase velocity electrical portion is formed of a series cascade of combined inductive and capacitive elements generating an electrical field in a field region for transmitting encoded information between the optical portion and the electrical portion.
Abstract:
The need to have a large single crystal of photorefractive material for devices such as optical limiters, optical memory, and beam couplers, is avoided by providing a photorefractive body (42) comprising small photorefractive particles (44) coupled by a couplant (43), for example glass, which is refractive index-matched to the particles. Such a body may comprise a fiber (42), or a bulk body (80). For many uses it will be necessary to align the photorefractive particles in the body and this can be achieved using fluid flows or electrostatically. Methods of making the particles, and of making photorefractive bodies are disclosed. Devices incorporating particle-couplant matrix bodies are disclosed.