Abstract:
Provided herein are a variety of methods and compositions for regulating angiogenesis, such methods and compositions being useful in a variety of applications where modulation of vascular formation is useful, including, but not limited to, treatments for ischemia and wound healing. Certain of the methods and compositions accomplish this by using various zinc finger proteins that bind to particular target sites in one or more VEGF genes. Nucleic acids encoding the zinc finger proteins are also disclosed. Methods for modulating the expression of one or more VEGF genes with the zinc finger proteins and nucleic acids are also disclosed. Such methods can also be utilized in a variety of therapeutic applications that involve the regulation of endothelial cell growth. Pharmaceutical compositions including the zinc finger proteins or nucleic acids encoding them are also provided.
Abstract:
The specificity of binding of a zinc finger to a triplet or quadruplet nucleotide target subsite depends upon the location of the zinc finger in a multifinger protein and, hence, upon the location of its target subsite within a larger target sequence. The present disclosure provides zinc finger amino acid sequences for recognition of triplet target subsites having the nucleotide G in the 5′-most position of the subsite, that have been optimized with respect to the location of the subsite within the target site. Accordingly, the disclosure provides finger position-specific amino acid sequences for the recognition of GNN target subsites. This allows the construction of multi-finger zinc finger proteins with improved affinity and specificity for their target sequences, as well as enhanced biological activity.
Abstract:
The present invention relates to methods of using libraries of randomized zinc finger proteins to identify genes associated with selected phenotypes.
Abstract:
The specificity of binding of a zinc finger to a triplet or quadruplet nucleotide target subsite depends upon the location of the zinc finger in a multifinger protein and, hence, upon the location of its target subsite within a larger target sequence. The present disclosure provides zinc finger amino acid sequences for recognition of triplet target subsites having the nucleotide G in the 5′-most position of the subsite, that have been optimized with respect to the location of the subsite within the target site. Accordingly, the disclosure provides finger position-specific amino acid sequences for the recognition of GNN target subsites. This allows the construction of multi-finger zinc finger proteins with improved affinity and specificity for their target sequences, as well as enhanced biological activity.
Abstract:
The specificity of binding of a zinc finger to a triplet or quadruplet nucleotide target subsite depends upon the location of the zinc finger in a multifinger protein and, hence, upon the location of its target subsite within a larger target sequence. The present disclosure provides zinc finger amino acid sequences for recognition of triplet target subsites having the nucleotide G in the 5′-most position of the subsite, that have been optimized with respect to the location of the subsite within the target site. Accordingly, the disclosure provides finger position-specific amino acid sequences for the recognition of GNN target subsites. This allows the construction of multi-finger zinc finger proteins with improved affinity and specificity for their target sequences, as well as enhanced biological activity.
Abstract:
The specificity of binding of a zinc finger to a triplet or quadruplet nucleotide target subsite depends upon the location of the zinc finger in a multifinger protein and, hence, upon the location of its target subsite within a larger target sequence. The present disclosure provides zinc finger amino acid sequences for recognition of triplet target subsites having the nucleotide G in the 5′-most position of the subsite, that have been optimized with respect to the location of the subsite within the target site. Accordingly, the disclosure provides finger position-specific amino acid sequences for the recognition of GNN target subsites. This allows the construction of multi-finger zinc finger proteins with improved affinity and specificity for their target sequences, as well as enhanced biological activity.
Abstract:
Provided herein are a variety of methods and compositions for regulating angiogenesis, such methods and compositions being useful in a variety of applications where modulation of vascular formation is useful, including, but not limited to, treatments for ischemia and wound healing. Certain of the methods and compositions accomplish this by using various zinc finger proteins that bind to particular target sites in one or more VEGF genes. Nucleic acids encoding the zinc finger proteins are also disclosed. Methods for modulating the expression of one or more VEGF genes with the zinc finger proteins and nucleic acids are also disclosed. Such methods can also be utilized in a variety of therapeutic applications that involve the regulation of endothelial cell growth. Pharmaceutical compositions including the zinc finger proteins or nucleic acids encoding them are also provided.
Abstract:
Disclosed herein are design methods for optimizing the specificity of a binding protein. The methods comprise iterative cycles of rational design, site selection, redesign and site selection of the redesigned molecule.