Abstract:
Naturally occurring fats, oils and fatty derivatives are continuously hydrogenated to fatty alcohols in a fixed-bed reactor in the presence of hydrogen in excess and hydrogenation catalysts under static pressures of 50 to 300 bar and at temperatures of 160 to 320° C. The liquid product is cooled and the excess hydrogen is returned to the reactor entrance by a gas circulation pump as a recycle gas after separation of the liquid product. The expense involved in cooling and reheating the recycle gas is eliminated without any reduction in the quality of the fatty alcohol produced providing the recycle gas is returned to the reactor entrance without reheating and the hydrogenation reaction is carried out under static pressures of at least 200 bar.
Abstract:
The invention relates firstly to a discontinuous process for conducting a heterogeneously catalyzed reaction taking place at elevated temperature, in which heat-sensitive products are formed, a heat transfer unit (4) different from the reactor (1) being used for heating and a fixed-bed catalyst (3) being used as the catalyst and the reaction mixture being continuously circulated in succession through the catalyst (3) and then through the heat transfer unit (4). The problem to be solved in this process is to avoid losses of catalyst and product and to shorten the batch time and, optionally, the reaction time in accordance with German patent applications P 38 13 612.0 and P 38 26 320.3. The invention also relates to a plant for the discontinuous heterogeneously catalyzed production of heat-sensitive products at elevated temperature comprising a reactor (1), characterized by a heat transfer unit (4) arranged outside and connected to the reactor (1), a catalyst container (3) containing a fixed-bed catalyst preceding the heat transfer unit and a pump (2) for continuously circulating the reaction mixture in succession through the catalyst (3) and then through the heat transfer unit (4).
Abstract:
A process is disclosed for preparing .alpha.-branched aliphatic monocarboxylic acids with 12 to 48 carbon atoms. In a first step of the process (a), .alpha.-branched aliphatic monohydric alcohols (Guerbet alcohols) are converted in the presence of caustic alkali into the alkali salts of the corresponding .alpha.-branched aliphatic monocarboxylic acids. In a second step of the process (b), the .alpha.-branched aliphatic monocarboxylic acids are released from the alkali salts by soap splitting in the presence of an inert diluting agent.
Abstract:
A process for the continuous transesterification of C.sub.6 -C.sub.22 fatty acid lower alkyl esters, particularly methyl esters, with polyhydric C.sub.2 -C.sub.5 alcohols, particularly glycerol, in a reaction column comprising a rectifying and reaction section, alkaline catalysts and polyhydric alcohol are introduced into the upper part of the reaction column and boiling fatty acid methyl ester is introduced into the middle part of the reaction column. The product collected in the sump of the column is removed, heated and returned to the lower part of the reaction column. Product is removed from the sump. Lower alkanols passing from the reaction column section to the rectifying section are rectified. The reaction column is operated in boiling equilibrium in its lower part and predominantly in an absorption/desorption equilibrium in its upper part.
Abstract:
The invention relates to a process, more especially a discontinuous process, for conducting a reaction taking place at elevated temperature in which heat-sensitive products are formed. To increase the volume-time yield, a heat transfer unit independent of the reactor is used for heating. The invention also relates to an apparatus for the production of heat-sensitive products at elevated temperatures. This apparatus comprises a reactor and a heating system. To increase the volume-time yield, the heating system comprises at least one heat transfer unit arranged outside and connected to the reactor.
Abstract:
A process for reducing the free fatty acid content of fats and oils by esterifying the free fatty acids with a lower monoalcohol in the presence of an acidic cation exchange resin as a solid esterification catalyst.
Abstract:
The epoxidation of terminally and/or internally olefinically unsaturated hydrocarbon compounds which are liquid at 50.degree. to 100.degree. C. and at atmospheric pressure (oil phase), in which the oil phase is treated with an acid phase containing acetic acid, hydrogen peroxide and peracetic acid in aqueous solution, after which the aqueous acid phase is separated from the oil phase, the peracetic acid in the aqueous acid phase is regenerated and the regenerated aqueous acid phase is returned to the epoxidation reactor. Epoxidation is carried out using an aqueous acid phase containing at most about 10% by weight of peracetic acid, and the peracetic acid content in the aqueous acid phase is reduced by at most about 50%, based on the peracetic acid content of the aqueous acid phase used, after a single passage through the epoxidation stage. After separation from the oil phase, the aqueous acid phase preferably is cooled before regeneration.
Abstract:
A process for the production of triglycerides of C.sub.1 -C.sub.4 alkyl esters of C.sub.6 -C.sub.22 fatty acids:a) where dry sodium carbonate catalyst is dissolved in glycerol and mixed with a molar excess of preferably the methyl ester of C.sub.6 -C.sub.22 fatty acid at a temperature between about 150.degree. C. and 250.degree. C. at less than atmospheric pressure and under substantially anhydrous conditions to produce an initial reaction mixture containing the corresponding triglycerides of said fatty acids, and partially reacted glycerol with unreacted hydroxyl groups (OH values 10-40),b) thereafter, a portion of the initial reaction mixture is reacted with additional C.sub.1 -C.sub.4 alkyl ester of C.sub.6 -C.sub.22 fatty acid under conditions to achieve substantially full conversion of said unreacted hydroxyl groups (OH values of 5 or less), andc) a product containing the corresponding triglycerides of said fatty acids is separated from unreacted alkyl ester and from the sodium carbonate catalyst. Improved light colored triglyceride products are achieved and can be separated readily from the sodium carbonate catalyst by filtration.
Abstract:
A process for the production of solid or paste-form products by fast reactions is carried out stoichiometrically wherein a gaseous medium is introduced into each of the reactants to be reacted with one another, the reactant streams formed are combined and are subsequently forced through a spray unit in a weight ratio of gaseous medium to product stream of from 0.04 to 0.3 (kg/kg) and at a rate of 0.1 to 15 m/second, as calculated from the gas-free reactant streams and based on the free cross-section of the spray unit. The products obtained are free from readily volatile constituents.
Abstract:
The invention is a process for the continuous liquid-phase esterification of C.sub.2 -C.sub.24 fatty acids with alkanols in countercurrent contact and reaction in a reaction column, the catalysts and fatty acids are introduced at the top plate and the alkanols below the lowest plate, at a head pressure of the reaction column of 200 to 900 hPa. The process reduces dehydration of the alkanols.