Abstract:
A nonvolatile memory device includes a substrate; a channel layer projecting from a surface of the substrate, in a direction perpendicular to the surface; a tunnel dielectric layer surrounding the channel layer; a plurality of interlayer dielectric layers and a plurality of control gate electrodes alternately formed along the channel layer; floating gate electrodes interposed between the tunnel dielectric layer and the plurality of control gate electrodes, the floating gate electrodes comprising a metal-semiconductor compound; and a charge blocking layer interposed between each of the plurality of control gate electrodes and each of the plurality of floating gate electrodes.
Abstract:
A nonvolatile memory device includes a substrate including a surface, a channel layer formed on the surface of the substrate, which protrudes perpendicularly from the surface, and a plurality of interlayer dielectric layers and a plurality of gate electrode layers alternately stacked along the channel layer, wherein the plurality of gate electrode layers protrude from the plurality of interlayer dielectric layers.
Abstract:
A nonvolatile memory device includes a substrate; a channel layer projecting from a surface of the substrate, in a direction perpendicular to the surface; a tunnel dielectric layer surrounding the channel layer; a plurality of interlayer dielectric layers and a plurality of control gate electrodes alternately formed along the channel layer; floating gate electrodes interposed between the tunnel dielectric layer and the plurality of control gate electrodes, the floating gate electrodes comprising a metal-semiconductor compound; and a charge blocking layer interposed between each of the plurality of control gate electrodes and each of the plurality of floating gate electrodes.
Abstract:
A method for fabricating a transistor including a bulb-type recess channel includes forming a bulb-type recess pattern in a substrate, forming a gate insulating layer over the substrate and the bulb-type recess pattern, forming a first gate conductive layer over the gate insulating layer, forming a void movement blocking layer over the first gate conductive layer in the bulb-type recess pattern, and forming a second gate conductive layer over the void movement blocking layer and the first gate conductive layer.
Abstract:
An isolation structure of a semiconductor device is formed by forming a hard mask layer on a semiconductor substrate having active and field regions to expose the field region. A trench is defined by etching the exposed field region of the semiconductor substrate using the hard mask as an etch mask. An SOG layer is formed in the trench partially filling the trench. An amorphous aluminum oxide layer is formed on the resultant substrate including the SOG layer. An HDP layer is formed on the amorphous aluminum oxide layer to completely fill the trench. The HDP layer and the amorphous aluminum oxide layer are subjected to CMP to expose the hard mask. The hard mask and portions of the amorphous aluminum oxide layer that are formed on the HDP layer are removed. The amorphous aluminum oxide layer is crystallized.
Abstract:
A method for manufacturing a fin transistor includes forming a trench by etching a semiconductor substrate. A flowable insulation layer is filled in the trench to form a field insulation layer defining an active region. The portion of the flowable insulation layer coming into contact with a gate forming region is etched so as to protrude the gate forming region in the active region. A protective layer over the semiconductor substrate is formed to fill the portion of the etched flowable insulation layer. The portion of the protective layer formed over the active region is removed to expose the active region of the semiconductor substrate. The exposed active region of the semiconductor substrate is cleaned. The protective layer remaining on the portion of the etched flowable insulation layer is removed. Gates are formed over the protruded gate forming regions in the active region.
Abstract:
A method of fabricating a non-volatile memory device, A tunnel insulating layer, a floating gate, and a pad nitride layer is formed on a semiconductor substrate. A isolation region of the semiconductor substrate is formed by etching to a predetermined depth, and a liner insulating layer is formed on an entire surface of the resulting trench for device isolation. A filling insulation layer is formed on the liner insulating layer to fill the trench and a first etching process is performed on the filling insulation layer and the liner insulating layer. The surface of semiconductor is recessed by performing a second etching process on the filling insulation layer. A capping layer is formed on an entire surface of the result formed by the second etching process. The device isolation layer of a concave shape is formed by performing an etching process on the capping layer.
Abstract:
Provided is a method for forming a gate of a non-volatile memory device. A tunneling layer, a charge trapping layer, a blocking layer, and a control gate layer are formed on a semiconductor substrate. A hard mask is formed on the control gate layer. The hard mask defines a region on which a gate is formed. A gate pattern is formed by etching the control gate layer, the blocking layer, the charge trapping layer, and the tunneling layer. A damage compensation layer on a side of the gate pattern is formed using ultra low pressure plasma of a pressure range from approximately 1 mT to approximately 100 mT.
Abstract:
An apparatus for use in a plasma chemical vapor deposition (CVD) includes a chamber; a cooling gas inlet passing through an electrostatic chuck for supplying a cooling gas to the bottom surface of a wafer when the plasma CVD process is performed; and a clamping unit for clamping the wafer to the electrostatic chuck when the cooling gas is supplied.
Abstract:
A non-volatile memory device includes a channel layer vertically extending from a substrate, a plurality of inter-layer dielectric layers and a plurality of gate electrodes that are alternately stacked along the channel layer, and an air gap interposed between the channel layer and each of the plurality of gate electrodes. The non-volatile memory device may improve erase operation characteristics by suppressing back tunneling of electrons by substituting a charge blocking layer interposed between a gate electrode and a charge storage layer with an air gap, and a method for fabricating the non-volatile memory device.