Abstract:
An oscillation decoupling device is disclosed with a load-receiving element which is mounted in an oscillating manner relative to a support unit at least along an active direction along which at least part of the load is applied having at least one sensor unit which detects an oscillation of the element due to the load and at least one actuator unit acting against the oscillation of the element. The support unit is modularly configured and serves as a support structure for at least one unit that receives the element and is elastically deformable in the active direction of the load. The load-receiving element is connected to the elastically deformable unit. The at least one actuator influences the deformation applied to the at least one unit, or is integrated thereon, so that the at least one actuator initiates a deformation acting against an elastic deformation due to the load inside the unit.
Abstract:
The present invention relates to a force measuring device comprising an amorphous carbon layer which is disposed on a solid actuator and has piezoresistive properties.
Abstract:
A method of registering biomedical images to reduce imaging artifacts caused by object movement is disclosed, wherein a certain number of features or landmarks is automatically defined and tracked in a first and second image to be registered to determine the optical flow vector between the first and second image. Registration then takes place by applying the inverse optical flow to the second image. The automatic feature selection step is carried out by determining the mean signal intensity in a defined neighborhood for every pixel, which mean signal intensity is then compared to a predetermined threshold. If the mean signal intensity value of said neighborhood is higher than the predetermined threshold the pixel is defined as a feature and is added to a list of features to be tracked.
Abstract:
The present invention relates to a method of patterning molecules on a substrate using a micro-contact printing process, to a substrate produced by said method and to uses of said substrate. It also relates to a device for performing the method according to the present invention.
Abstract:
A method of registering biomedical images to reduce imaging artefacts caused by object movement is disclosed, wherein a certain number of features or landmarks is automatically defined and tracked in a first and second image to be registered to determine the optical flow vector between the first and second image. Registration then takes place by applying the inverse optical flow to the second image. The automatic feature selection step is carried out by determining the mean signal intensity in a defined neighborhood for every pixel, which mean signal intensity is then compared to a predetermined threshold. If the mean signal intensity value of said neighborhood is higher than the predetermined threshold the pixel is defined as a feature and is added to a list of features to be tracked.
Abstract:
A method of imaging the individual components of systems with sparse spectra using magnetic resonance imaging including the steps of a) exciting nuclei of labeled components using a MRI pulse sequence, b) selecting a proper spectral window to avoid/minimize signal overlap of aliased frequency components. In step a) preferably a spiral chemical shift imaging (spCSI) sequence is employed. In a preferred embodiment, hyperpolarized nuclei of 13C are used for labeling in a pyruvate substrate with metabolites of lacatate, alanine, and bicarbonate.
Abstract:
An electrode array for the cyclic reduction and oxidation of a redox species in an electrolyte, wherein both electrodes are disposed on an insulating substrate and connected to a counter electrode for the application of a voltage, comprising: 1) a control electrode for reacting the redox species for cyclic electron transport between the electrodes: and b) a collector electrode disposed opposite the control electrode, wherein a layer structure composed of a second insulator and a charge transfer mediator disposed thereon is additionally disposed on the side of the collector electrode located opposite the insulating substrate for reacting the redox species. Two methods for operating the electrode array are disclosed.
Abstract:
The present invention relates to a method of patterning molecules on a substrate using a micro-contact printing process, to a substrate produced by said method and to uses of said substrate. It also relates to a device for performing the method according to the present invention.
Abstract:
A method and associated substrate is provided for applying a layer or pattern of metal on a substrate. The method includes providing a target substrate, immobilizing a layer of polymeric material on the target substrate, and applying and immobilizing a layer or pattern of metal on the layer of polymeric material on the target substrate using a stamp onto which the layer or pattern of metal has previously been applied, by bringing the stamp into conformal contact with the target substrate.
Abstract:
What is described is an oscillation decoupling device with a load-receiving element which is mounted in an oscillating manner relative to a support unit at least along an active direction along which at least part of the load is applied, and with at least one sensor-actuator unit which detects an oscillation of the element due to the load and acts against the oscillation of the element by means of actuators.The invention is characterised in that the support unit is modularly configured and serves as a support structure for at least one unit that receives the element and is elastically deformable in the active direction of the load, in that the load-receiving element is connected to the elastically deformable unit, and in that an actuator influencing the deformation is applied to the at least one unit, or is integrated in it, so that the actuator initiates a deformation acting against an elastic deformation due to the load inside the unit.