Abstract:
Carbon dioxide capture and release includes contacting a gas comprising carbon dioxide with a mixture comprising a precursor and a solvent and reducing the precursor to form a capture agent. The capture agent is reacted with the carbon dioxide to form a non-volatile species containing carbon dioxide. The non-volatile species is oxidized to regenerate the precursor and to release carbon dioxide. The mixture may be formed by combining the precursor and the solvent.
Abstract:
There is disclosed a cathode/fuel formulation used for primary cells (batteries) or even for semi-fuel cells. More particularly, there is disclosed an air-breathing cathode semi-fuel cell having an anode and a cathode formulation, wherein the anode comprises a formulation of metals and alloys selected from the group consisting of Li, Mg, Ca, Al, and combinations thereof, and the cathode formulation comprises components (a) an aromatic nitro compound as a fuel, (b) a binder agent, and (c) and a conductive particle composition, wherein the three components are mixed together and pressed onto a scaffold to form a cathode, wherein the cathode formulation further comprises oxygen or openings to allow for air to circulate. More particularly, there is disclosed a battery having an anode and a cathode formulation, wherein the anode comprises a formulation of metals and alloys selected from the group consisting of Li, Mg, Ca, Al, and combinations thereof, and the cathode formulation comprises components (a) an aromatic nitro compound as a fuel, (b) a binder agent, and (c) and a conductive particle composition, wherein the three components are mixed together and pressed onto a scaffold to form a cathode.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
A biocompatible flow cytometry system such that low levels of bacteria or other particles in a sample will not adsorb onto the system's surfaces. The biocompatible flow cytometry system comprises an upper chamber assembly. The upper chamber comprises a biocompatible input system, a means for retaining and adjusting the biocompatible system, a sheath fluid input port, and a means of interfacing with a glass tube. The interface between the biocompatible system and a glass tube allows for the low level contaminants to be irradiated with a laser source selected to interact with marked bacteria and cause them to fluoresce at a wavelength that can be detected.
Abstract:
The present invention relates to moving microorganisms to a surface, where they are grown in the presence and absence of antimicrobials, and by monitoring the growth of the microorganisms over time in the two conditions, their susceptibility to the antimicrobials can be determined. The microorganisms can be moved to the surface through electrophoresis, centrifugation or filtration. When the movement involves electrophoresis, the presence of oxidizing and reducing reagents lowers the voltage at which electrophoretic force can be generated and allows a broader range of means by which the target can be detected. Monitoring can comprise optical detection, and most conveniently includes the detection of individual microorganisms. The microorganisms can be stained in order to give information about their response to antimicrobials.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
A method for the detection of microorganisms in a sample comprising contacting said sample with a biosensor concentration module, allowing microorganisms to grow for a first period of time and detecting growth of discrete microorganisms as an indication of the presence of said microorganisms.
Abstract:
There is disclosed a method for producing metal oxide nanoparticles that are capped or otherwise encapsulated with conducting polymers. There is further disclosed a method for using metal oxide nanoparticles that are capped or encapsulated with conducting polymers in batteries and other energy storage devices. There is further disclosed a battery or other energy storage device having a cathode made from metal oxide nanoparticles capped or encapsulated with conducting particles. More particularly the battery is a secondary lithium battery.