Abstract:
Systems, methods and apparatus implementing techniques for separating and/or analyzing fluid mixtures. The techniques employ microfluidic separation devices that include an inlet port for receiving a fluid feed stream, a microscale fluid flow channel in fluid communication with the fluid inlet port, a phase equilibrium control region located along the fluid flow channel for controlling conditions including temperature and/or pressure to provide a thermal equilibrium, a capillary network in the temperature control region, a first outlet port in indirect fluid communication with the fluid flow channel through the capillary network, and a second outlet port in direct fluid communication with the fluid flow channel. A plurality of microfluidic separation devices can be coupled in fluidic communication to provide for separation of complex mixtures. The systems, methods and apparatus can be used to characterize fluid mixtures.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
An apparatus and method for screening combinatorial libraries of materials by measuring the response of individual library members to mechanical perturbations is described. The apparatus generally includes a sample holder for containing the library members, an array of probes for mechanically perturbing individual library members, and an array of sensors for measuring the response of each of the library members to the mechanical perturbations. Library members undergoing screening make up a sample array, and individual library members constitute elements of the sample array that are confined to specific locations on the sample holder. During screening, the apparatus mechanically perturbs individual library members by displacing the sample array (sample holder) and the array of probes. Typically, all of the elements of the sample array are perturbed simultaneously, but the apparatus also can also perturb individual or groups of sample array elements sequentially. The flexible apparatus and method can screen libraries of materials based on many different bulk physical properties, including Young's modulus (flexure, uniaxial extension, biaxial compression, and shear); hardness (indentation), failure (stress and strain at failure, toughness), adhesion (tack, loop tack), and flow (viscosity, melt flow indexing, and rheology), among others.
Abstract:
A method for preparing a library is provided in which the library contains an array of elements and each element contains a different combination of materials. A related apparatus includes an x-ray beam directed at the library, a chamber which houses the library and a beamline for directing the x-ray beam onto the library in the chamber. The chamber may include a translation stage that holds the library and that is programmable to change the position of the library relative to the x-ray beam and a controller that controls the movement of the translation stage to expose an element to the x-ray beam in order to rapidly characterize the element in the library. During the characterization, the x-ray beam scatters off of the element and a detector detects the scattered x-ray beam in order to generate characterization data for the element.
Abstract:
Water Resistant Film Forming Compositions Incorporating Hydrophilic Activities A film forming composition that includes a polymer having from about 80 mole percent to about 100 mole percent of a hydrophobic component, and from about 0 to about 20 mole percent of a charged component; a bioactive agent; and a solvent in which the polymer and the bioactive agent are homogeneously dispersed in the composition. The film forming composition can be used as a “liquid bandage” to form a water resistant film on a biological surface, where the polymer and the bioactive agent remain miscible.
Abstract:
The present invention relates to a miniature rheometer, a parallel rheometer, and improved force sensor elements which may advantageously be used in combination with the miniature rheometer and the parallel rheometer. The miniature rheometer is adapted to determine rheological characteristics of materials which are provided in the form of small quantity samples. The miniature rheometer comprises an actuating element, a sensing element and a feedback circuit to provide rebalance of the shear force applied by the sample to the sensing element, which insures an exceptional stiffness in determining the shear strain so as to allow measurements of high accuracy. The parallel rheometer of the present invention allows simultaneous measurements of a plurality of samples so as to allow of a plurality of samples within a short time period. The force sensor element according to the present invention allows simultaneous measurement of a shear force and a normal force applied to the sensor element. Moreover, a rheometer is provided which comprises a force sensor based on stress-optic material.
Abstract:
A composition for personal, home, or laundry treatment comprising a polymer made up of one or more crosslinked rake or comb silicone copolymer segments. A process for making copolymers for use in such compositions involves hydrosilylation in the presence of a catalyst.
Abstract:
An apparatus and method for measuring viscosity or related properties of fluid samples in parallel is disclosed. The apparatus includes a plurality of tubes and reservoirs in fluid communication with the tubes. The tubes provide flow paths for the fluid samples, which are initially contained within the reservoirs. The apparatus also includes a mechanism for filling the reservoirs with the fluid samples, and a device for determining volumetric flow rates of fluid samples flowing from the reservoirs through the plurality of tubes simultaneously. The disclosed apparatus is capable of measuring viscosity or related properties of at least five fluid samples simultaneously. Useful reservoirs and tubes include syringes.
Abstract:
An apparatus and method for screening combinatorial libraries of materials by measuring the response of individual library members to mechanical perturbations is described. The apparatus generally includes a sample holder for containing the library members, an array of probes for mechanically perturbing individual library members, and an array of sensors for measuring the response of each of the library members to the mechanical perturbations. Library members undergoing screening make up a sample array, and individual library members constitute elements of the sample array that are confined to specific locations on the sample holder. During screening, the apparatus mechanically perturbs individual library members by displacing the sample array (sample holder) and the array of probes. Typically, all of the elements of the sample array are perturbed simultaneously, but the apparatus also can also perturb individual or groups of sample array elements sequentially. The flexible apparatus and method can screen libraries of materials based on many different bulk physical properties, including Young's modulus (flexure, uniaxial extension, biaxial compression, and shear); hardness (indentation), failure (stress and strain at failure, toughness), adhesion (tack, loop tack), and flow (viscosity, melt flow indexing, and rheology), among others.
Abstract:
The present invention relates to a miniature rheometer, a parallel rheometer, and improved force sensor elements which may advantageously be used in combination with the miniature rheometer and the parallel rheometer. The miniature rheometer is adapted to determine rheological characteristics of materials which are provided in the form of small quantity samples. The miniature rheometer comprises an actuating element, a sensing element and a feedback circuit to provide rebalance of the shear force applied by the sample to the sensing element, which insures an exceptional stiffness in determining the shear strain so as to allow measurements of high accuracy. The parallel rheometer of the present invention allows simultaneous measurements of a plurality of samples so as to allow of a plurality of samples within a short time period. The force sensor element according to the present invention allows simultaneous measurement of a shear force and a normal force applied to the sensor element. Moreover, a rheometer is provided which comprises a force sensor based on stress-optic material.