摘要:
A buck power converter creates a desired output voltage from a greater input voltage with higher efficiency than linear regulators or charge pumps. For compact-size and cost sensitive products, the use of the buck power converter is hindered mainly because of lack of physical space and increases in the cost of the passive components like the inductor and capacitor. Techniques are presented to reduce the sizes of the passive components so that they can be integrated on-chip or in-package or on board. A signal converter in the buck power converter determines the duty cycle of a switching control signal. The switching control signal would ordinarily have driven a power switching circuit that provides current to the inductor in the buck power converter. The signal converter outputs a modified (multiphase) switching control signal that includes multiple separated on-periods that taken together approximate the duty cycle of the switching control signal while maintaining the same control loop frequency. The multiphase switching signal drives the power switching circuit to provide current to the inductor during each of the multiple separated on-periods so that the output voltage ripple decreases by a factor of the number of phases in the modified switching signal. In this way, if the ripple amplitude is kept same, the sizes of the passive components can be reduced by the factor of the number of phases in the modified switching control signal.
摘要:
A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
摘要:
An apparatus includes a first memory die including a first memory core, a second memory die including a second memory core, and a periphery die coupled to the first memory die and to the second memory die. The periphery die includes periphery circuitry corresponding to the first memory core and periphery circuitry corresponding to the second memory core. The periphery die is responsive to a memory controller and configured to initiate a first memory operation at the first memory core and a second memory operation at the second memory core.
摘要:
A technique and corresponding circuitry are presented for a process independent, self-calibrating relaxation based clock source. The technique and circuitry presented here can reduce the time and cost needed for calibration significantly. The relaxation based clock source produces a clock signal whose frequency is dependent upon a trim value. Starting from an initial trim value, the clock signal is generated, its frequency is compared with a reference clock frequency value, and the trim value is correspondingly adjusted up or down a bit at a time. After this process has continued for a while, min-max logic is used to determine the maximum and minimum trim values and, based on these, the final trim value for the clock is set. This calibration process can also be used to extract whether, and by how much, the implementation on silicon of a particular chip lies in the fast or slow process corners.
摘要:
A method may be performed at a data storage device that includes a memory and a controller. The method includes providing user data to a variable-bit error correction coding (ECC) encoder. The ECC encoder generates a first set of parity bits. A first number of parity bits in the first set of parity bits is determined based on stored counts of read errors. The method also includes storing the user data and the first set of parity bits to a memory of the data storage device.
摘要:
A low drop-out (LDO) voltage regulation circuit includes first and second internal current paths. The first internal current path is between the input supply voltage and ground and includes the regulator's buffer circuit. The second internal current path is between the input supply voltage and ground and includes the regulator's power transistor. The amount of current flowing through the first internal current path relative to the amount of current flowing through the second internal current path is an increasing function of a current supplied to a load connected to the output supply node. The load regulation of the LDO is improved as the DC gain will not go down at lower load currents. Further, the no load to full load response time is improved as the load pole and power MOS gate pole are actively controlled with respect to output load current. In this mechanism, as the amount of current being supplied to the load decreases, the internal current flow shifts from the first internal current path to the second internal current path and vice versa. This arrangement maintains the desired pole structure and keeps the quiescent current largely the same for all load current levels.
摘要:
Techniques are presented for reducing the DC voltage shift in a voltage regulator, particularly for high and ultra-high speed load switching operation. The regulator includes a power transistor, connected between an input supply voltage and an output node, and an error amplifier, having its output connected to control the gate of the output transistor, a first input connected to receive a reference voltage, and a second input connected to a feedback node. The regulator also includes a first resistance, connected between the feedback node and ground, and also a second resistance, a third resistance, and a first capacitance, where the feedback node is connected to the output node through a combination of the first capacitance in parallel with the second resistance and in series with the third resistance. Consequently, the feedback path from the output node of the regulator uses a partial feedback mechanism, where the capacitance is included to generate a zero in the feedback divider path, but a resistance is placed in series with the capacitance so that at high frequencies the feedback level is still separated from the output level.
摘要:
An apparatus includes a first semiconductor device including a NAND flash memory core. The apparatus also includes a second semiconductor device including periphery circuitry associated with the NAND flash memory core.
摘要:
A proposed inrush control circuit may work in the presence of supply noise. A linear regulator in bypass mode may be designed for inrush current control, but may be susceptible to irregularities from increased supply noise. The circuit may include a splitting of the bypass power MOS that are switched on with some delay during the power on to control the initial power-on inrush current.
摘要:
A capacitor from a Metal-Oxide-Metal (“MoM”) process may include a plurality of metal layers arranged with different design structures. The metal layers may be connected with vias. The metal layers may include wires, such as rows and/or fingers that are arranged for maximizing capacitance between adjacent fingers, as well as between fingers of different metal layers. As the spacing of the fingers is increased, the reliability, yield of final product, and ease of manufacturing both increase. The capacitor increases the spacing of wires/fingers while either maintaining or improving the capacitance per unit area.