Abstract:
A photovoltaic device and a manufacturing method thereof are provided. The photovoltaic device includes: a substrate; a first conductive layer formed on the substrate; P layers and N layers alternately formed along a first direction on the first conductive layer; and I layers covering the P layers and the N layers on the first conductive layer, wherein the P layers and the N layers are separated from each other by a first interval, the I layers are formed between the P layers and the N layers that are separated by the first interval, and the P layers, the I layers, and the N layers formed along the first direction form unit cells.
Abstract:
Disclosed are a method of fabricating a silicon quantum dot layer and a device manufactured using the same. A first capping layer is formed on a substrate, and a silicon-containing precursor layer is formed on the first capping layer. A second capping layer is formed on the silicon-containing precursor layer. The first capping layer, the silicon-containing precursor layer, and the second capping layer are irradiated to convert the silicon-containing precursor layer into a stack including a first poly-crystalline silicon layer, a silicon quantum dot layer on the first poly-crystalline silicon layer, and a second poly-crystalline silicon layer on the silicon quantum dot layer.
Abstract:
A transparent conductive layer includes a substrate, a first conductive layer disposed on the substrate, and a second conductive layer disposed on the first conductive layer, wherein the second conductive layer comprises a textured surface and an opening which exposes the first conductive layer, wherein the opening comprises a diameter of about 1 micrometer to about 3 micrometers. Also disclosed is a method of manufacturing the transparent conductive layer and a photoelectric device.
Abstract:
Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
Abstract:
Provided is a method of manufacturing a photovoltaic device using a Joule heating-induced crystallization method. The method includes: forming a first conductive pattern on a substrate; forming a photoelectric conversion layer on the substrate having the first conductive pattern; and crystallizing at least part of the photoelectric conversion layer by applying an electric field to the photoelectric conversion layer, wherein the photoelectric conversion layer includes a first amorphous semiconductor layer containing first impurities, a second intrinsic, amorphous semiconductor layer, and a third amorphous semiconductor layer containing second impurities.
Abstract:
Disclosed herein is a photoelectric conversion device having a semiconductor substrate including a front side and back side, a protective layer formed on the front side of the semiconductor substrate, a first non-single crystalline semiconductor layer formed on the back side of the semiconductor substrate, a first conductive layer including a first impurity formed on a first portion of a back side of the first non-single crystalline semiconductor layer, and a second conductive layer including the first impurity and a second impurity formed on a second portion of the back side of the first non-single crystalline semiconductor layer.
Abstract:
A transparent conductive layer includes a substrate, a first conductive layer disposed on the substrate, and a second conductive layer disposed on the first conductive layer, wherein the second conductive layer comprises a textured surface and an opening which exposes the first conductive layer, wherein the opening comprises a diameter of about 1 micrometer to about 3 micrometers. Also disclosed is a method of manufacturing the transparent conductive layer and a photoelectric device.
Abstract:
A method of electrically eliminating defective solar cell units that are disposed within an integrated solar cells module and a method of trimming an output voltage of the integrated solar cells module are provided, where the solar cells module has a large number (e.g., 50 or more) of solar cell units integrally disposed therein and initially connected in series one to the next. The method includes providing a corresponding plurality of repair pads, each integrally extending from a respective electrode layer of the solar cell units, and providing a bypass conductor integrated within the module and extending adjacent to the repair pads. Pad-to-pad spacings and pad-to-bypass spacings are such that pad-to-pad connecting bridges may be selectively created between adjacent ones of the repair pads and such that pad-to-bypass connecting bridges may be selectively created between the repair pads and the adjacently extending bypass conductor.
Abstract:
A solar cell module includes a substrate, a lower electrode layer, a semiconductor layer and an upper electrode layer for an embodiment. The lower electrode layer may include a plurality of area-separating grooves separating the substrate into an active area and a peripheral area surrounding the active area, and a plurality of first cell-separating grooves formed in the active area. The semiconductor layer is formed on the lower electrode layer. The semiconductor layer includes a plurality of second cell-separating grooves that are spaced apart from the first cell-separating grooves. The upper electrode layer is formed on the semiconductor layer. The upper electrode layer includes a plurality of third cell-separating grooves that are spaced apart from the second separating grooves.
Abstract:
A solar cell including a first conductive type semiconductor substrate; a first conductive type first semiconductor layer on a back surface of the semiconductor substrate; a second conductive type second semiconductor layer on the back surface of the semiconductor substrate at a height different from the first semiconductor layer, the second semiconductor layer being separated from the first semiconductor layer; and a passivation layer on the back surface of the semiconductor substrate. The passivation layer covers at least a portion of the first semiconductor layer and at least a portion of the second semiconductor layer. The passivation layer includes impurities.