Abstract:
This invention provides a signal processing method of multiple micro-electro-mechanical system devices. The signal processing method includes: providing at least two MEMS devices; applying driving or modulating signals of different frequencies to the MEMS devices such that the MEMS devices generate respective MEMS signals with respective frequencies; and combining the MEMS signals with respective frequencies into one or more multi-frequency signals and outputting the multi-frequency signals, wherein a number of the multi-frequency signals is less than a number of the MEMS signals with respective frequencies. This invention also provides a combo MEMS device integrating two or more MEMS devices and two or more vibration sources.
Abstract:
The present invention discloses a micro-electro-mechanical system (MEMS) device. The MEMS device includes: a substrate; a proof mass which defines an internal space inside and forms at least two capacitors with the substrate; at least two anchors connected to the substrate and respectively located in the capacitor areas of the capacitors from a cross-sectional view; at least one linkage truss located in the hollow structure, wherein the linkage truss is directly connected to the anchors or indirectly connected to the anchors through buffer springs; and multiple rotation springs located in the hollow structure, wherein the rotation springs are connected between the proof mass and the linkage truss, such that the proof mass can rotate along an axis formed by the rotation springs. There is no coupling mass which does not form a movable electrode in the connection between the proof mass and the substrate.
Abstract:
This invention discloses an image capture device and an image synthesis method thereof. The image capture device comprises an image pickup module and a processing module. The image pickup module scans a plurality of visual angles of a scene in advance to obtain a plurality of temporary images. Each of the temporary images has a scanning focal length value. The processing module analyzes the plurality of temporary image of each of the visual angles to obtain a temporary focal length value. The processing module obtains a weighting focal length value by each temporary focal length value by using a function to control the image pickup module in order to perform a panorama image capturing process according to the weighting focal length value.
Abstract:
The invention relates to an inertia sensing apparatus, comprising a substrate, a first and second inertia sensing elements. The first inertia sensing element is connected to a substrate and has a containment space. The second inertia sensing element is connected to the substrate and is disposed in the containment space of the first inertia sensing element, wherein the first inertia sensing element and the second sensing element are connected to the substrate, and the first inertia sensing element and the second sensing element are not connected to each other, the first inertia sensing element and the second sensing element individually and independently detect at least one inertia motion of the inertia sensing apparatus. Therefore, the invention is based on the second inertia sensing element disposed in the containment space of the first inertia sensing element and they individually and independently detect at least one inertia motion of the inertia sensing apparatus, so as to decrease an area of the inertia sensing apparatus, thus reducing the chip size and prevent the two inertia sensing elements from coupling to result in decreasing the sensing precision.
Abstract:
According to an embodiment of the disclosure, an acoustics transducer is provided, which includes a support substrate having an upper surface and a lower surface, the upper surface including a first portion and a second portion surrounding the first portion, a recess extending from the upper surface towards the lower surface, the recess is between the first portion and the second portion of the upper surface, a vibratable membrane disposed directly on the recess, the vibratable membrane including a fixed portion fixed on the support substrate and a suspended portion, and a back plate disposed on the support substrate and opposite to the vibratable membrane. The suspended portion has an edge extending substantially along with an edge of an opening of the recess. The suspended portion is separated from the first portion and the second portion of the upper surface by an inner interval and an outer interval, respectively.
Abstract:
A truss structure is provided. The truss structure comprises a substrate; and plural sub-truss groups disposed on the substrate, wherein each sub-truss group comprises plural VIAs; and plural metal layers interlaced with the plural VIAs, wherein the plural sub-truss groups are piled up on each other to form a 3-D corrugate structure.
Abstract:
An electronic device, an electronic system, and a control method are provided. The electronic device includes a display, a memory, and a processor. The memory stores an audiovisual module and a control module. The processor receives initial image information from an external electronic device through a bridge device. The processor is coupled to the display and the memory. The processor executes the audiovisual module to transform the initial image information with a first image format into transformed image information with a second image format, which is compatible to the display. The processor controls the display to display according to the transformed image information. The processor executes the control module to receive a control signal for operating the transformed image information, and provide the control signal to the external electronic device through the bridge device.
Abstract:
The invention provides a MEMS device. The MEMS device includes: a substrate; a proof mass, including at least two slots, each of the slots including an inner space and an opening, the inner space being relatively closer to a center area of the proof mass than the opening; at least two anchors located in the corresponding slots and connected to the substrate; at least two linkages located in the corresponding slots and connected to the corresponding anchors; and a multi-dimensional spring structure for assisting a multi-dimensional movement of the proof mass, the multi-dimensional spring structure surrounding a periphery of the proof mass, and connected to the substrate through the linkages and the anchors. The multi-dimensional spring structure includes first and second springs for assisting an out-of-plane movement and an in-plane movement of the proof mass.
Abstract:
The invention provides a micro-electro-mechanical system pressure sensor. The micro-electro-mechanical system pressure sensor includes: a substrate, including at least one conductive wiring; a membrane disposed above the substrate to form a semi-open chamber between the membrane and the substrate, the semi-open chamber having an opening to receive an external pressure; and a cap, disposed above the membrane and forming an enclosed space with the membrane, the cap including a top electrode corresponding to the membrane and at least one portion of the membrane forming a bottom electrode, wherein the top and bottom electrodes form a sensing capacitor to sense the external pressure.
Abstract:
A network and storage I/O device is described for use with a host computer system having a system bus coupled to a host processor and a main memory to provide a high bandwidth network server system. The network and storage I/O device includes a plurality of network controllers to communicate with client computers connected over a network, a plurality of storage controllers to transfer data to and from storage devices, at least one memory element to temporarily store data transferred between the network controllers and the storage controllers and a crossbar switch having a plurality of nodes to interconnect the plurality of network controllers, the plurality of storage controllers and the at least one memory element. The network and storage I/O device also includes a bridge coupled between one of the nodes and the system bus of the host computer.