Abstract:
A truss structure is provided. The truss structure comprises a substrate; and plural sub-truss groups disposed on the substrate, wherein each sub-truss group comprises plural VIAs; and plural metal layers interlaced with the plural VIAs, wherein the plural sub-truss groups are piled up on each other to form a 3-D corrugate structure.
Abstract:
A truss structure is provided. The truss structure comprises a substrate; and plural sub-truss groups disposed on the substrate, wherein each sub-truss group comprises plural VIAs; and plural metal layers interlaced with the plural VIAs, wherein the plural sub-truss groups are piled up on each other to form a 3-D corrugate structure.
Abstract:
A capacitive transducer and manufacturing method thereof is provided. A multifunction device including a plurality of the capacitive transducers is also provided, where the capacitive transducers are disposed on a substrate and include at least one microphone and at least one pressure sensor or ultrasonic device.
Abstract:
According to an embodiment of the disclosure, an acoustics transducer is provided, which includes a support substrate having an upper surface and a lower surface, the upper surface including a first portion and a second portion surrounding the first portion, a recess extending from the upper surface towards the lower surface, the recess is between the first portion and the second portion of the upper surface, a vibratable membrane disposed directly on the recess, the vibratable membrane including a fixed portion fixed on the support substrate and a suspended portion, and a back plate disposed on the support substrate and opposite to the vibratable membrane. The suspended portion has an edge extending substantially along with an edge of an opening of the recess. The suspended portion is separated from the first portion and the second portion of the upper surface by an inner interval and an outer interval, respectively.
Abstract:
According to an embodiment of the disclosure, an acoustics transducer is provided, which includes a support substrate having an upper surface and a lower surface, the upper surface including a first portion and a second portion surrounding the first portion, a recess extending from the upper surface towards the lower surface, the recess is between the first portion and the second portion of the upper surface, a vibratable membrane disposed directly on the recess, the vibratable membrane including a fixed portion fixed on the support substrate and a suspended portion, and a back plate disposed on the support substrate and opposite to the vibratable membrane. The suspended portion has an edge extending substantially along with an edge of an opening of the recess. The suspended portion is separated from the first portion and the second portion of the upper surface by an inner interval and an outer interval, respectively.
Abstract:
A capacitive transducer and manufacturing method thereof is provided. A multifunction device including a plurality of the capacitive transducers is also provided, where the capacitive transducers are disposed on a substrate and include at least one microphone and at least one pressure sensor or ultrasonic device.
Abstract:
A sensing membrane applied to a micro-electro-mechanical system (MEMS) device includes a body, a stress releasing structure and a connecting portion. The stress releasing structure for releasing a membrane residual stress surrounds the body. The stress releasing structure has several first perforations and several second perforations. The first perforations are located between the body and the second perforations. The connecting portion connects the stress releasing structure and a substrate of the MEMS device.
Abstract:
A sensing membrane applied to a micro-electro-mechanical system (MEMS) device includes a body, a stress releasing structure and a connecting portion. The stress releasing structure for releasing a membrane residual stress surrounds the body. The stress releasing structure has several first perforations and several second perforations. The first perforations are located between the body and the second perforations. The connecting portion connects the stress releasing structure and a substrate of the MEMS device.