Abstract:
Systems and devices for selectively applying electrical energy to a target region beneath a skin surface of a patient involve applying an electrical impulse to one or more electrodes on a skin surface of the patient to modulate one or more nerves at the target region, where the impulse is substantially blocked at nerves located between the target region and the skin surface such that only the nerves at the target region are modulated by the electrical impulse.
Abstract:
The present invention provides systems, apparatus and methods for selectively applying electrical energy to body tissue. A device is provided having an enclosure within an outer wall formed from an electrically-permeable material to allow for electrical energy to pass from the interior of the enclosure through the outer wall. The device further includes an electrode positioned within the interior of the enclosure and a fluid passage coupled to the enclosure for delivery of an electrically conductive fluid into the interior of the enclosure such that the electrically conductive fluid couples the electrode with the electrically-permeable section of the outer wall. The conductive fluid allows for the passage of electrical energy from the electrode through the fluid and the outer wall of the enclosure for treatment of tissue on or in a patient. In this manner, the electrode does not directly contact the tissue of the patient, which reduces the potential for collateral tissue damage or necrosis and/or excessive electric fields in the tissue.
Abstract:
Transcutaneous electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including nasal or paranasal sinus symptoms that resemble an immune-mediated response (“sinus” headaches). The devices and methods may also be used to treat rhinitis, sinusitis, or rhinosinusitis, irrespective of whether those disorders are co-morbid with a headache. They may also be used to treat other disorders that may be co-morbid with migraine or cluster headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
Abstract:
Devices and systems are disclosed for the non-invasive treatment of medical conditions through delivery of energy to target tissue, comprising a source of electrical power, a magnetically permeable toroidal core, and a coil that is wound around the core. The coil and core are embedded in a continuous electrically conducting medium, which is adapted to have a shape that conforms to the contour of an arbitrarily oriented target body surface of a patient. The conducting medium is applied to that surface by any of several disclosed methods, and the source of power supplies a pulse of electric charge to the coil, such that the coil induces an electric current and/or an electric field within the patient, thereby stimulating tissue and/or one or more nerve fibers within the patient. The invention shapes an elongated electric field of effect that can be oriented parallel to a long nerve. In one embodiment, the device comprises two toroidal cores that lie adjacent to one another.
Abstract:
Devices, systems and methods for treating bronchial constriction related to asthma, anaphylaxis or chronic obstructive pulmonary disease wherein the treatment includes stimulating selected nerve fibers responsible for smooth muscle dilation at a selected region within a patient's neck, thereby reducing the magnitude of constriction of bronchial smooth muscle.
Abstract:
Compositions and methods for treating an annulus fibrosis defect comprising an angiogenic factor and a carrier. Methods include administering the composition to the annulus fibrosis defect, where the administering can include injecting the composition. The present compositions can stimulate angiogenesis and revascularization thereby facilitating repair of the defect.
Abstract:
A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
Abstract:
Devices, systems and methods are disclosed for treating bronchial constriction related to asthma, anaphylaxis, chronic obstructive pulmonary disease (COPD), exercise-induced bronchospasm and post-operative bronchospasm. The treatment comprises transmitting impulses of energy non-invasively to selected nerve fibers that activate neural pathways to reduce the release of acetycholine from airway-related vagal preganglionic neurons within the brain of the patient. The transmitted energy impulses, comprising magnetic and/or electrical energy, stimulate the selected nerve fibers to produce the bronchodilation.
Abstract:
A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
Abstract:
Methods for promoting angiogenesis comprising administering platelet-rich plasma to a site and stimulating the site with an electromagnetic field. Platelets include platelet-rich plasma and compositions can further include stem cells such as adipose stromal cells and cells derived from bone marrow aspirate. Methods also comprise isolating platelets from a patient's blood, forming a composition including the platelets, delivering the composition to a site in need of treatment, and electrically stimulating the site.