Abstract:
Methods of forming semiconductor devices including vertical channels and semiconductor devices formed using such methods are provided. The methods may include forming a stack including a plurality of insulating patterns alternating with a plurality of conductive patterns on an upper surface of a substrate and forming a hole through the stack. The hole may expose sidewalls of the plurality of insulating patterns and the plurality of conductive patterns. The sidewalls of the plurality of insulating patterns may be aligned along a first plane that is slanted with respect to the upper surface of the substrate, and midpoints of the respective sidewalls of the plurality of conductive patterns may be aligned along a second plane that is substantially perpendicular to the upper surface of the substrate.
Abstract:
A method of manufacturing a non-volatile memory device, can be provided by forming a gate insulating layer and a gate conductive layer on a substrate that includes active regions that are defined by device isolation regions that include a carbon-containing silicon oxide layer. The gate conductive layer and the gate insulating layer can be sequentially etched to expose the carbon-containing silicon oxide layer. The carbon-containing silicon oxide layer can be wet-etched to recess a surface of the carbon-containing silicon oxide layer to below a surface of the substrate. Then, an interlayer insulating layer can be formed between the gate insulating layer and the gate conductive layer on the carbon-containing silicon oxide layer, where an air gap can be formed between the carbon-containing silicon oxide layer and the gate insulating layer.
Abstract:
An apparatus for forming stress corrosion cracks comprises a heating unit which includes a conductive member and a heating coil disposed adjacent to the conductive member to generate steam pressure in the tube specimen, an end holding unit, and a control unit for controlling the heating unit and the end holding unit. The stress corrosion cracks occurring in the equipment of nuclear power plants or apparatus industries during operation can be directly formed in a tube specimen using steam pressure under conditions similar to those of the actual environment of nuclear power plants, thus increasing accuracy for analysis of properties of stress corrosion cracks which are in actuality generated, thereby improving reliability of nuclear power plants or apparatus industries and effectively assuring nondestructive testing capability, resulting in very useful industrial applicability.
Abstract:
An oil recovery system, designed to recover oil from oil-contaminated water of a river, lake or sea due to a difference in specific gravity of the liquids. The system includes a 4-stage separation tank 15 having four chambers 51-54. The first chamber 51 includes a hopper-shaped oil floating unit 59 in communication with a piston pump 68 (FIG. 5) and having porous filters 61, 62 therein. The second and third chambers 52, 53 include a plurality of horizontal diaphragms 63 for reducing the processing time for separating oil from water. The system can be continuously operated without being stopped during an oil recovering operation. The oil recovered from discharged pipe 67 is usable so that the system preferably conserves natural resources.
Abstract:
A list display method and apparatus are disclosed. The list display method, for a terminal having a display unit, includes detecting a necessity for displaying a list, classifying list items into viewable items and aggregated items, displaying the viewable items in the list view region and displaying information regarding the aggregated items in the list aggregate region. Responsive to inputs aggregate items may be classified as viewable items and corresponding ones of the viewable items are classified as aggregate items.
Abstract:
Semiconductor devices, and methods of fabricating the same, include forming a trench between a plurality of patterns on a substrate to be adjacent to each other, forming a first sacrificial layer in the trench, forming a first porous insulation layer having a plurality of pores on the plurality of patterns and on the first sacrificial layer, and removing the first sacrificial layer through the plurality of pores of the first porous insulation layer to form a first air gap between the plurality of patterns and under the first porous insulation layer.
Abstract:
A method of manufacturing a flash memory device includes: forming a dielectric layer on an active region of a substrate having an isolation region and the active region; forming a floating gate on the dielectric layer; forming an isolation layer in the isolation region; forming a nitride layer including a first nitride layer portion formed on an exposed surface of the floating gate and a second nitride layer portion formed on an exposed surface of the isolation layer; selectively removing nitrogen atoms from the second nitride layer portion of the nitride layer; forming an inter-gate dielectric layer on both the first nitride layer portion and the isolation layer; and forming a control gate on the inter-gate dielectric layer.
Abstract:
A tunnel insulating layer and a charge storage layer are sequentially stacked on a substrate. A recess region penetrates the charge storage layer, the tunnel insulating layer and a portion of the substrate. The recess region is defined by a bottom surface and a side surface extending from the bottom surface. A first dielectric pattern includes a bottom portion covering the bottom surface and inner walls extending from the bottom portion and covering a portion of the side surface of the recess region. A second dielectric pattern is in the recess region between the inner walls of the first dielectric pattern, and the second dielectric pattern enclosing an air gap. The air gap that is enclosed by the second dielectric pattern may extend through a major portion of the second dielectric pattern in a direction away from the bottom surface of the recess region.