Abstract:
In a vertical semiconductor device and a method of manufacturing a vertical semiconductor device, sacrificial layers and insulating interlayers are repeatedly and alternately stacked on a substrate. The sacrificial layers include boron (B) and nitrogen (N) and have an etching selectivity with respect to the insulating interlayers. Semiconductor patterns are formed on the substrate through the sacrificial layers and the insulating interlayers. The sacrificial layers and the insulating interlayers are at least partially removed between the semiconductor patterns to form sacrificial layer patterns and insulating interlayer patterns on sidewalls of the semiconductor patterns. The sacrificial layer patterns are removed to form grooves between the insulating interlayer patterns. The grooves expose portions of the sidewalls of the semiconductor patterns. A gate structure is formed in each of the grooves.
Abstract:
Provided are methods of fabricating flash memory devices that may prevent a short circuit from occurring between cell gate lines. Methods of fabricating such flash memory devices may include forming gate lines including a series of multiple cell gate lines and multiple selection gate lines. Each gate line may include a stacked structure of a tunnel insulating layer, a floating gate, a gate insulating layer, and/or a polysilicon layer operable to be a control gate, all formed on a semiconductor substrate. Methods may include forming a first insulating layer that selectively fills gaps between the cell gate lines from the bottom up and between adjacent ones of the cell gate lines and the selection gate lines, and does not fill a space located on outer sides of the selection gate lines that are opposite the plurality of cell gate lines. A spacer may be formed on the outer sides of the selection gate lines that are opposite to the cell gate lines, after forming the first insulating layer. A second insulating layer may be formed in a space where the spacer is formed.
Abstract:
A method of manufacturing a flash memory device includes: forming a dielectric layer on an active region of a substrate having an isolation region and the active region; forming a floating gate on the dielectric layer; forming an isolation layer in the isolation region; forming a nitride layer including a first nitride layer portion formed on an exposed surface of the floating gate and a second nitride layer portion formed on an exposed surface of the isolation layer; selectively removing nitrogen atoms from the second nitride layer portion of the nitride layer; forming an inter-gate dielectric layer on both the first nitride layer portion and the isolation layer; and forming a control gate on the inter-gate dielectric layer.
Abstract:
A semiconductor device includes a substrate having a trench, a liner layer pattern on sidewalls and a bottom surface of the trench, the liner layer pattern including a first oxide layer pattern and a second oxide layer pattern, a diffusion blocking layer pattern on the liner layer pattern, and an isolation layer pattern in the trench on the diffusion blocking layer pattern.
Abstract:
Disclosed are methods for fabricating semiconductor devices incorporating a composite trench isolation structure comprising a first oxide pattern, a SOG pattern and a second oxide pattern wherein the oxide patterns enclose the SOG pattern. The methods include the deposition of a first oxide layer and a SOG layer to fill recessed trench regions formed in the substrate. The first oxide layer and the SOG layer are then subjected to a planarization sequence including a CMP process followed by an etchback process to form a composite structure having a substantially flat upper surface that exposes both the oxide and the SOG material. The second oxide layer is then applied and subjected to a similar CMP/etchback sequence to obtain a composite structure having an upper surface that is recessed relative to a plane defined by the surfaces of adjacent active regions.
Abstract:
A method of manufacturing a non-volatile memory device, can be provided by forming a gate insulating layer and a gate conductive layer on a substrate that includes active regions that are defined by device isolation regions that include a carbon-containing silicon oxide layer. The gate conductive layer and the gate insulating layer can be sequentially etched to expose the carbon-containing silicon oxide layer. The carbon-containing silicon oxide layer can be wet-etched to recess a surface of the carbon-containing silicon oxide layer to below a surface of the substrate. Then, an interlayer insulating layer can be formed between the gate insulating layer and the gate conductive layer on the carbon-containing silicon oxide layer, where an air gap can be formed between the carbon-containing silicon oxide layer and the gate insulating layer.
Abstract:
Disclosed are methods for fabricating semiconductor devices incorporating a composite trench isolation structure comprising a first oxide pattern, a SOG pattern and a second oxide pattern wherein the oxide patterns enclose the SOG pattern. The methods include the deposition of a first oxide layer and a SOG layer to fill recessed trench regions formed in the substrate. The first oxide layer and the SOG layer are then subjected to a planarization sequence including a CMP process followed by an etchback process to form a composite structure having a substantially flat upper surface that exposes both the oxide and the SOG material. The second oxide layer is then applied and subjected to a similar CMP/etchback sequence to obtain a composite structure having an upper surface that is recessed relative to a plane defined by the surfaces of adjacent active regions.
Abstract:
In a method of forming a device isolation layer for minimizing a parasitic capacitor and a non-volatile memory device using the same, a trench is formed on a substrate. A first insulation layer is formed on a top surface of the substrate and on inner surfaces of the trench, so that the trench is partially filled with the first insulation layer. A second insulation layer is formed on the first insulation layer to a thickness to fill up the trench, thereby forming a preliminary isolation layer. An etching rate of the second insulation layer is different from that of the first insulation layer. A recess is formed at a central portion of the preliminary isolation layer by partially removing the first and second insulation layers, thereby forming the device isolation layer including the recess. The recess in the device isolation layer reduces a parasitic capacitance in a non-volatile memory device.
Abstract:
A semiconductor device having a trench isolation region and methods of fabricating the same are provided. The method includes forming a first trench region in a substrate, and a second trench region having a larger width than the first trench region in the substrate. A lower material layer may fill the first and second trench regions. The lower material layer may be etched by a first etching process to form a first preliminary lower material layer pattern remaining in the first trench region and form a second preliminary lower material layer pattern that remains in the second trench region. An upper surface of the second preliminary lower material layer pattern may be at a different height than the first preliminary lower material layer pattern. The first and second preliminary lower material layer patterns may be etched by a second etching process to form first and second lower material layer patterns having top surfaces at substantially the same height. First and second upper material layer patterns may be formed on the first and second lower material layer patterns, respectively.
Abstract:
In a method of forming a device isolation layer for minimizing a parasitic capacitor and a non-volatile memory device using the same, a trench is formed on a substrate. A first insulation layer is formed on a top surface of the substrate and on inner surfaces of the trench, so that the trench is partially filled with the first insulation layer. A second insulation layer is formed on the first insulation layer to a thickness to fill up the trench, thereby forming a preliminary isolation layer. An etching rate of the second insulation layer is different from that of the first insulation layer. A recess is formed at a central portion of the preliminary isolation layer by partially removing the first and second insulation layers, thereby forming the device isolation layer including the recess. The recess in the device isolation layer reduces a parasitic capacitance in a non-volatile memory device.