摘要:
The present invention relates to a water-soluble polymer complex that includes a water-soluble block copolymer and a magnetic nanoparticle, wherein the water-soluble polymer complex has a nonzero net magnetic moment in the absence of an applied magnetic field at ambient temperatures. The water-soluble block copolymer is preferably a diblock or triblock copolymer and the magnetic nanoparticle is preferably a ferrimagnetic or ferromagnetic nanoparticle. The water-soluble complexes may be derivatized with reactive groups and conjugated to biomolecules. Exemplary water-soluble polymer complexes covered under the scope of the invention include PEG112-b-PAA40 modified CoFe2O4; NH2-PEG112-b-PAA40 modified CoFe2O4; PNIPAM68-b-PAA28 modified CoFe2O4; and mPEG-b-PCL-b-PAA modified CoFe2O4.
摘要:
Methods to form a polymer by ring-opening polymerization include reacting, a mixture comprising a monomer, an accelerator, an initiator, and a catalyst comprising a 1,1,1,3,3,3-hexafluoropropan-2-ol-2-yl group to form the polymer. Also disclosed are polymers including a residual amount of the catalyst in an amount greater than 0 weight percent.
摘要:
A one pot method of preparing cyclic carbonyl compounds comprising an active pendant pentafluorophenyl ester group is disclosed. The cyclic carbonyl compounds can be polymerized by ring opening methods to form ROP polymers comprising repeat units comprising a side chain pentafluorophenyl ester group. Using a suitable nucleophile, the pendant pentafluorophenyl ester group can be selectively transformed into a variety of other functional groups before or after the ring opening polymerization.
摘要:
Provided is a method of inhibiting magnetically induced aggregation of ferrimagnetic and/or ferromagnetic nanoparticles by encapsulating the nanoparticles in a silica shell. The method entails coating magnetic nanoparticle surfaces with a polyacid polymer to form polymer-coated magnetic nanoparticles and treating the polymer-coated magnetic nanoparticles with a silica precursor to form uniform silica-coated magnetic nanoparticles. By controlling the thickness of the silica encapsulating the nanoparticles, the inherent magnetically induced aggregation of the nanoparticles can be completely inhibited.
摘要:
A method of preparing a cyclic monomer, comprising: forming a first mixture comprising a precursor compound, bis(pentafluorophenyl)carbonate, and a catalyst; wherein the precursor compound has a structure comprising a) two or more carbons, and b) two functional groups selected from the group consisting of primary amine, secondary amine, thiol group, hydroxyl group, and combinations thereof; and agitating the first mixture at a temperature effective to form a second mixture comprising the cyclic monomer, the cyclic monomer selected from the group consisting of a cyclic carbonate, a cyclic carbamate, a cyclic urea, a cyclic thiocarbonate, a cyclic thiocarbamate, and a cyclic dithiocarbonate.
摘要:
A composition comprises a surface modified nanoparticle comprising a core comprising a material selected from the group consisting of organic materials, organometallic materials, inorganic materials, metals, metal oxides, and combinations thereof; and a surface branch covalently linked to the core having the general formula (3):
摘要:
A method including providing Au-doped Co nanoparticles. The nanoparticles include a combination of non-ferromagnetic nanoparticles and weakly ferromagnetic nanoparticles. The nanoparticles each have an exterior surface. The surfaces of the nanoparticles are functionalized with 7-(5-uracil-ylcarbamoyl)heptanoic acid. A polymer is provided having a general formula including a uracil group. A dispersion is formed by agitating a solution of the nanoparticles. The solution is spin cast into a film. The film is heated under vacuum at a first temperature, TFM, resulting in inducing ferromagnetism in the non-ferromagnetic nanoparticles and converting the non-ferromagnetic nanoparticles to ferromagnetic nanoparticles, and resulting in enhancing ferromagnetism in the weakly ferromagnetic nanoparticles. The nanoparticles are aligned such that magnetic easy axes of the nanoparticles are oriented by applying a magnetic field to the dispersion while at a second temperature less than TFM. The axes align in a plane parallel to a plane of the film.
摘要:
The present invention provides a method of fabricating an interconnect structure in which a patternable low-k material replaces the need for utilizing a separate photoresist and a dielectric material. Specifically, this invention relates to a simplified method of fabricating single-damascene and dual-damascene low-k interconnect structures with at least one patternable low-k dielectric and at least one inorganic antireflective coating. In general terms, a method is provided that includes providing at least one patternable low-k material on a surface of an inorganic antireflective coating that is located atop a substrate. The inorganic ARC is liquid deposited and comprises a polymer that has at least one monomer unit comprising the formula M-R1 wherein M is at least one of Si, Ge, B, Sn, Fe, Ta, Ti, Ni, Hf and La and R1 is a chromophore. At least one interconnect pattern is formed within the at least one patternable low-k material and thereafter the at least one patternable low-k material is cured. The inventive method can be used to form dual-damascene interconnect structures as well as single-damascene interconnect structures.
摘要:
The present invention provides a method of fabricating an interconnect structure in which a patternable low-k material replaces the need for utilizing a separate photoresist and a dielectric material. Specifically, this invention relates to a simplified method of fabricating single-damascene and dual-damascene low-k interconnect structures with at least one patternable low-k dielectric and at least one inorganic antireflective coating. In general terms, a method is provided that includes providing at least one patternable low-k material on a surface of an inorganic antireflective coating that is located atop a substrate. The inorganic ARC is liquid deposited and comprises a polymer that has at least one monomer unit comprising the formula M-R1 wherein M is at least one of Si, Ge, B, Sn, Fe, Ta, Ti, Ni, Hf and La and R1 is a chromophore. At least one interconnect pattern is formed within the at least one patternable low-k material and thereafter the at least one patternable low-k material is cured. The inventive method can be used to form dual-damascene interconnect structures as well as single-damascene interconnect structures.
摘要:
A method comprises disposing, on a porous support membrane, an aqueous mixture comprising a crosslinkable polymer comprising a poly(meth)acrylate and/or poly(meth)acrylamide backbone, thereby forming an initial film layer, wherein the crosslinkable polymer comprises a side chain nucleophilic amine group capable of interfacially reacting with a multi-functional acid halide crosslinking agent to form a crosslinked polymer; contacting the initial film layer with a mixture comprising i) the multi-functional acid halide crosslinking agent, ii) an optional accelerator, and iii) an organic solvent, the organic solvent being a non-solvent for the crosslinkable polymer; and allowing the crosslinkable polymer to interfacially react with the crosslinking agent, thereby forming a composite filtration membrane comprising an anti-fouling selective layer comprising the crosslinked polymer.