摘要:
A process is provided for preparing oxymorphone from morphine by:(1) reacting morphine with (1a) an acyl halide or anhydride to form 3-acylmorphine, or (1b) reacting morphine with benzyl-halide to form 3-benzylmorphine;(2) Oxidizing the 6-hydroxy group of the 3-acyl or 3-benzylmorphine so as to form the corresponding 3-acyl or 3-benzylmorphinone; and thereafter either by (3a) or (3b):(3a) introducing a .beta.-oriented hydroxy group at the 14-position of the 3-acyl- or 3-benzyl-morphinone with aqueous hydrogen peroxide and an acid at a temperature of about 15.degree. to about 70.degree. C. to form the 3-acyl or 3-benzyl-14-hydroxymorphinone;(3b) acylating the 3-acyl or 3-benzyl-morphinone with an acylating agent so as to form the dienol acylate followed by oxidizing the dienol acetate to the corresponding 3-acyl or 3-benzyl-14 -hydroxymorphinone;(4) hydrogenating the 3-acyl-14-hydroxymorphinone with a catalyst so as to form the 3-acyloxymorphone;(5) hydrolyzing the 3-acyl-oxymorphone with aqueous acidic or basic solution to form oxymorphone;(6) hydrogenating the 3-benzyl-14-hydroxymorphinone with a catalyst so as to form oxymorphone.
摘要:
An apparatus and method for the monitoring and abatement of fugitive VOC emissions is disclosed. Suction, generated by a fume pump or a venturi type ejector, pulls air and VOC's from one or more sources of VOC emissions such as the mechanical seals of pumps or compressors. These VOC fumes are collected, separated from any liquids in a knock-out pot, and directed to a flameless combustor/thermal oxidizer comprising a tube packed with heat resistant material and surrounded by an electric heater and thermal insulation. This matrix bed of heat resistant materials is heated to a temperature sufficient to oxidize/destroy the VOC emissions. Thereafter, an optional convective quench section may be used to lower the temperature of the exhaust gases prior to their release to the atmosphere. By monitoring the temperature and/or the amount of power needed, changes in VOC emissions can be detected.
摘要:
A matrix bed is disclosed in which a non-planar reaction wave front is formed during operation. This is accomplished by heating the matrix bed, containing heat-resistant material, until at least a reaction portion of the matrix bed is above the temperature required for a plurality of reactant gas streams to react. Next, the reactant gas streams are directed through the matrix bed in a manner so as to form at least a Bunsen, Burke-Schumann, inverted-V, or some other type of non-planar reaction wave front at the portion of the matrix bed that is heated above the reactant gas streams reaction temperature. At the non-planar reaction wave front, the reactant gas streams react to produce a reaction product gas stream that is then exhausted from the matrix bed.
摘要:
Improved methods for the destruction of methane gas within a colliery ventilation stream are provided that include the efficient utilization of the energy obtained from the oxidation of the methane gas. In practicing the methods, a colliery vent gas, containing a dilute concentration of methane in air, is oxidized within a matrix bed of heat resistant material to convert the methane to oxidation products with the simultaneous release of heat energy. The heat energy is recovered to thermally heat a working fluid used to operate a steam turbine to produce electricity.
摘要:
Methods and apparatus are provided for destruction of volatile organic compounds ("VOC's") from process fumes having variable amounts of such VOC's wherein a nominal amount of the fumes are passed through an oxidizer for destruction of the VOC's and the hot products from the oxidizer are fed to an afterburner that is principally made up of a matrix bed of heat resistant material. The heat from the oxidized gases heats the matrix bed. Fume flows exceeding the nominal flow are bypassed directly to an inlet port of the afterburner where they are passed through the matrix bed of the afterburner, which has been heated by the oxidized gases from the oxidizer, and are combusted into additional gaseous products in a combustion wave. The system allows for utilization of the heat produced from the oxidation of the nominal flow for destructing fume flows that exceed the nominal flow.
摘要:
The present invention reduces the sulfur and odor emissions from a paper-making Kraft process by recovering the sulfur in the non-combustible gases (NGCs) emitted by the Kraft process. In a first embodiment of the invention, the NGCs are flamelessly oxidized in a flameless thermal oxidizer to form a sulfur oxide-containing, gaseous products stream. The gaseous products stream is scrubbed with a scrubber solution stream to remove the sulfur components resulting in a scrubbed gas stream and spent scrubber solution stream having S.sub.2 O.sub.3 and SO.sub.4, and SO.sub.3 soluble salts. At least a portion of the spent scrubber solution from the scrubber is directed back into the Kraft process, thus recovering the sulfur. In a second general embodiment of the invention, the NGCs are flamelessly oxidized in a moving, packed bed calcinator. The calcinator receives a lime mud stream from the Kraft process, forms a packed bed therefrom, calcines the packed bed, and releases it as a quick lime stream. Concurrently, the NCGs are directed through the moving, packed bed and are flamelessly oxidized in a reaction wave in the packed bed to form a gaseous products stream with sulfur components. The sulfur components react with the packed bed to form sulfur/calcium components. The sulfur/calcium components exit the calcinator with the quick lime stream and are recovered by the Kraft process.
摘要:
An improved method and apparatus is provided for thermally reacting chemicals in a matrix bed of porous inert media. The reaction is conducted in an apparatus that is capable of establishing and maintaining a non-planar reaction wave within the matrix bed. The positioning of the non-planar reaction wave permits the interior surfaces of the vessel to be maintained at a temperature at least above 175.degree. F. The apparatus includes a vessel that contains the matrix bed; one or more feed tubes that extend into the matrix bed, where preferably an exterior portion of each of the feed tubes that passes through the vessel is insulated; an exhaust outlet; and a means for heating the matrix bed. The non-planar reaction wave is established by heating at least a portion of the matrix bed to at least the reaction temperature of the chemicals and feeding a process stream containing the chemicals to be reacted into the feed tubes. Upon exiting the feed tubes, the process stream is reacted in a non-planar reaction wave to produce heat and the reacted process stream. The heat from the non-planar reaction wave maintains the interior surfaces of the vessel at a temperature of at least 175.degree. F. during operation of the vessel. The reacted process stream is then directed to the exhaust outlet of the vessel.
摘要:
Improved methods for the treatment of commingled wastes and process systems for practicing those methods are provided. The methods are practiced by first treating the commingled waste material in a primary treatment unit in the presence of a carrier fluid to separate the organic waste from the inorganic waste. The carrier fluid and the gaseous products from the primary unit are then treated in a flameless oxidizer, which efficiently destroys any remaining organic compounds. In one embodiment, the process gases exiting the flameless oxidizer are recycled to the primary treatment unit.
摘要:
The present invention provides thermal oxidizers containing improved preheating designs and processes for improving the preheating of thermal oxidizers. The processes are practiced by preheating the matrix-bed of matrix materials in a flow path that is opposite in direction to the flow path for the processing fluids through the matrix bed. In such a process, there is a substantial reduction in the time and energy required for the preheating of the matrix bed in comparison to the prior processes using same flow direction preheating.
摘要:
Apparatuses for treating gas streams containing variations in VOC concentration whereby the VOC's are destroyed in a combination non-catalytic/catalytic oxidation system are disclosed. A non-catalytic destruction matrix composed of inert ceramic materials that enhance process mixing and provide thermal inertia for process stability is used when VOC concentrations are high and a catalytic oxidizer is principally used when VOC concentrations are low. The exhaust from the non-catalytic destruction matrix is passed through the catalytic oxidizer to maintain proper catalytic oxidizer operating temperatures. Supplemental fuel and air are added as appropriate upstream or downstream of the non-catalytic oxidizer to maintain proper heat values in each portion of the system.