Abstract:
The invention relates to a process for producing an organo-mineral fertilizer from vinasse, filter cake and generally boiler ashes, as byproducts of the sugar and/or alcohol manufacture and, optionally, complemented with fertilizer sources composed of macronutrients (primary and secondary) and micronutrients. The process comprises, in a preferred form of the invention, the steps of: concentrating the vinasse until about 65% of solids (p/p); mixing and dissolving the fertilizer elements in the concentrated vinasse; mixing and drying the filter cake and ashes in a hot gas stream obtained by burning bagasse or fine straw; impregnating this dry mixture with the concentrated vinasse mixture and the added fertilizer agents; and, finally, drying and granulating the final formulated mixture. The end product is a granular solid containing N, P, K, Ca, S, Mg and micronutrients, according to the previously programmed formulation. In the other form of the invention, the same process is effected, but without adding the fertilizer elements.
Abstract:
A process and apparatus for assisting the extraction and processing of biodiesel oil from organic feedstock includes: providing crushed oil-bearing organic feedstock meal from which has been extracted a first amount of biodiesel oil wherein the meal retains a second amount of entrained oil; forming a meal slurry containing said meal and passing the slurry to an anaerobic digester; anaerobically digesting the meal slurry so as to convert said second amount of entrained oil to produce heat, methane gas, and organic fertilizer or oil-free cattle feed; providing an electrical generator and employing the methane gas for at least the production of electricity by burning the methane gas in the electrical generator which is adapted to convert heat to electricity and re-cycling at least some of the electricity.
Abstract:
The invention provides for corn protein concentrates (CPC). The CPC described here can be used for herbicidal, fertilizer, and nutrient media benefits.
Abstract:
The present invention relates to a plant nutrition formulation and method thereof, and more particularly to a plant nutrition formulated by recovery filtrate from non-woody fiber plant biopulping and method thereof. The present invention provides a plant nutrition formulation including steps of providing a culture solution containing a culture medium, a non-woody fiber plant material and microbial suspension, fermenting the culture solution for preparing a biopulping solution, filtrating the biopulping solution for preparing a filtrate, and formulating the filtrate for preparing a plant nutrition.
Abstract:
Provided are various embodiments of a fertilizer composition. The fertilizer compositions include one or more compounds having a high nitrogen content, which may be measured by a carbon to nitrogen atom ratio. Also provided are methods for increasing nitrogen content in soil, promoting crop production and fertilizing.
Abstract:
This invention relates to high organic matter plant food products for agronomic uses. Also disclosed are combination products comprising the high organic matter plant food products, articles made from and incorporating same and methods of using same in agricultural operations for restoration and/or maintenance of organic matter values and/or nutrient values in soils, particularly certified organic farm soils.
Abstract:
An apparatus for treating particulate biodegradable organic waste includes a thermal hydrolysis reactor receiving the particulate biodegradable organic waste for performing thermal hydrolysis at a temperature of about 130° C. at a pressure at or above the saturated water vapor pressure of the organic waste to produce a slurry including solubilized organic material and residual solids. A pH adjustment means for adjusting the pH of the particulate biodegradable organic waste as necessary to provide an acidic pH of greater than about 3.15 before thermo hydrolysis of the particulate biodegradable organic waste is provided. Separating means receive the solubilized organic material and residual solids for separating solubilized organic material from the residual solids. An anaerobic reactor is configured to receive the solubilized organic material.
Abstract:
An eco-friendly fertilizer that acts as a plant growth promotion agent, soil improvement agent, bactericide and insecticide agent, disease and harmful insect prevention agent and the like, and is suitable for organic farming. The fertilizer contains extract from fruits, leaves, stems, seeds and/or roots of the Yaeyama Aoki and increases the amount of yield and extends the freshness period after harvest when applied to fruits, vegetables, leafy vegetables, root vegetables, grains as well as flowers and shrubs.
Abstract:
A process for preparation of nutritionally upgraded oilseed meals which are protein and lipid-rich and have a reduced fiber content, and plant oils from oilseeds for use in fish or other non-human animal diets or human foods comprising the steps of: providing a source of oilseed; subjecting the oilseed to heat treatment to substantially reduce the concentration of at least some antinutritional components normally present in the oilseed to obtain heat-treated seed; dehulling the heat-treated seed to produce a meat fraction, a hull fraction or a mixture thereof; and cold pressing the meat fraction or the mixture to yeild the plant oils and the protein and lipid-rich meals.
Abstract:
A method for treating particulate biodegradable organic waste includes sizing the waste and adding a base prior to introducing the waste to a thermal hydrolysis reactor and hydrolyzing the waste at a temperature of about 130null C. or greater and a pressure greater than the saturated water vapor pressure to produce a slurry including solubilized organic material and residual solids. The solubilized organic material is separated from the residual solids using a liquid/solid separator and the solubilized organics are subjected to anaerobic digestion to produce a methane gas. The base is preferably potassium hydroxide (KOH) at a concentration of about 1%. The method may further include preheating the particulate biodegradable organic waste with latent heat of the separated solubilized organic material prior to thermal hydrolysis.