Abstract:
A method for filling at least one buffer container of a hydrogen filling station, the station comprising a fluid circuit linked to said at least one buffer container, the circuit of the filling station comprising a first end linked to at least one source of hydrogen gas, the circuit comprising a second end provided with a transfer conduit intended to be removably connected to a tank, the method being characterized in that it comprises a step of determining the current concentration of at least one impurity in the hydrogen in the buffer container during the filling of same, a step of comparing said current concentration of the impurity relative to a predefined threshold concentration and, when the current concentration of the at least one impurity reaches said threshold concentration, stopping the filling of said buffer container.
Abstract:
This fluid storage and transfer system includes a first storage tank and second storage tank configured to contain cryogenic liquids. The first storage tank has a heat exchanger. A second cryogenic liquid from the second storage tank subcools a first cryogenic liquid in the first storage tank and pressurizes the first storage tank. The first storage tank is then further pressurized using the heat exchanger. The first cryogenic fluid is transferred from the first storage tank to an end point. In an example, the first cryogenic fluid is liquefied natural gas and the second cryogenic fluid is liquid nitrogen.
Abstract:
The present invention relates to an apparatus for pressurizing delivery of a low-temperature liquefied material, and more particularly, to an apparatus for pressurizing delivery of a low-temperature liquefied material, which can convert the low-temperature liquefied material into a high-pressure gas and easily deliver the gas without causing changes in a composition and flashing phenomenon.
Abstract:
A compressed natural gas storage and dispensing system having bulk storage tanks in fluid communication with a natural gas supply source; a primary compressor delivering the natural gas to the bulk storage tanks; dispensing storage tanks in fluid communication with the bulk storage tanks and in fluid communication with fuel dispensers; a secondary compressor delivering the natural gas to the dispensing storage tanks from the bulk storage tanks; wherein when the pressure within the dispensing storage tanks falls below a predetermined minimum pressure, natural gas is delivered from the bulk storage tanks to the dispensing storage tanks, and wherein when the pressure in the bulk storage tanks falls below a predetermined minimum pressure, natural gas is delivered from the supply source to the bulk storage tanks.
Abstract:
Disclosed is a system for reducing a heating value of natural gas. The system includes a heat exchanger to liquefy a portion of components having high heating values, a gas-liquid separator to separate the liquefied component, and a nitrogen adding mechanism to add nitrogen to remaining non-liquefied components. The system includes an additional heat exchanger to cool and liquefy the remaining non-liquefied components after the gas-liquid separator separates the liquefied component from the natural gas. The heat exchangers employ cold heat generated upon regasification of LNG. The system can reduce the heating value of natural gas composed of a variety of hydrocarbon components according to requirements of a place of demand by separating the component with the higher heating value from the natural gas to allow the separated component to be used as fuel, thereby reducing an overall size and operating costs of the system.
Abstract:
A clean fill port system for a compressed gas tank having a fill port includes a sealable enclosure surrounding the fill port. The sealable enclosure includes a closeable lid that defines a sealed cavity within the sealable enclosure when the lid is in a closed position. A pressurized fluid supply port is directly fluidly connected with the sealed cavity. The sealable enclosure completely encloses the fill port and is configured to maintain a pressurized fluid within the sealed cavity such that ingress of water or debris into the sealed cavity is prevented.
Abstract:
The present invention relates to an apparatus for pressurizing delivery of a low-temperature liquefied material, and more particularly, to an apparatus for pressurizing delivery of a low-temperature liquefied material, which can convert the low-temperature liquefied material into a high-pressure gas and easily deliver the gas without causing changes in a composition and flashing phenomenon.
Abstract:
A fuel gas delivery system is provided. The fuel gas delivery system includes a feed line configured to provide a natural gas stream and a cryocooler fluidly coupled to the feed line. The cryocooler is configured to condense the natural gas to provide a liquefied natural gas (LNG) stream and to freeze impurities contained in the natural gas stream. The frozen impurities are separated from said LNG stream. A first heat exchanger is fluidly coupled to the cryocooler and the first heat exchanger is configured to vaporize at least a portion of the LNG stream to provide compressed natural gas. A delivery line is configured to supply the compressed natural gas to an end user and a removal line is configured to remove the impurities from the fuel gas delivery system.
Abstract:
Provided is hydrogen supply equipment that, when switching hydrogen supplied to equipment using hydrogen from (i) hydrogen produced at a normal temperature or hydrogen stored at a normal temperature to (ii) hydrogen stored at a low temperature, supplies the equipment using hydrogen with normal hydrogen obtained by returning the hydrogen at the low temperature to a normal temperature and then passing this hydrogen through equipment for accelerating a conversion from parahydrogen to orthohydrogen.
Abstract:
A method and system of storing and transporting gases comprising mixing the gases with liquid natural gas to form a mixture. The mixture is a liquid-liquid mixture or slurry, and is stored in vessel configured for maintaining the mixture at a first location. The mixture is transported to a second location for storage in vessel for maintaining the mixture. The mixture is removed from the second location storage vessel for separation and use in additional processes.