Abstract:
A system to maintain an inert ullage in a hydrocarbon tank. The system provides for outgassing/venting of ullage gases when a high pressure event is found within the tank. Further, when a low pressure event occurs, during fuel discharge or based on ambient conditions, a source of inert gas, such as nitrogen) supplies gas on-demand to the hydrocarbon tank via a pressure regulator (preferably along the venting system) to maintain both the pressure and inerting of the ullage. A method for maintaining the inert ullage is also provided, whereby a low pressure event triggers a supply of inert gas into the tank.
Abstract:
A method for filling at least one buffer container of a hydrogen filling station, the station comprising a fluid circuit linked to said at least one buffer container, the circuit of the filling station comprising a first end linked to at least one source of hydrogen gas, the circuit comprising a second end provided with a transfer conduit intended to be removably connected to a tank, the method being characterized in that it comprises a step of determining the current concentration of at least one impurity in the hydrogen in the buffer container during the filling of same, a step of comparing said current concentration of the impurity relative to a predefined threshold concentration and, when the current concentration of the at least one impurity reaches said threshold concentration, stopping the filling of said buffer container.
Abstract:
A method and apparatus is provided which will provide over-pressure protection for an underground storage cavern by reducing the pressure of a pressurized gas stream originating from the an underground storage cavern to form a lower pressure gas stream, monitoring the pressure of a lower pressure gas stream and stopping the flow of the lower pressure gas stream to the pipeline should the pressure of the lower pressure gas stream exceed a threshold value.
Abstract:
A method and apparatus is provided which will provide over-pressure protection for an underground storage cavern by reducing the pressure of a pressurized gas stream originating from the an underground storage cavern to form a lower pressure gas stream, monitoring the pressure of a lower pressure gas stream and stopping the flow of the lower pressure gas stream to the pipeline should the pressure of the lower pressure gas stream exceed a threshold value.
Abstract:
An apparatus and method for increasing efficiency of a gas turbine and a marine structure having the gas turbine are disclosed. The marine structure includes an ambient LNG vaporizer for regasifying cryogenic LNG via heat exchange with air and the gas turbine for generating electric power. The marine structure includes a moist-air mixing chamber disposed at an upstream side of the gas turbine, a condensed-water nozzle to spray condensed water, generated from air during the heat exchange in the LNG vaporizer, into the moist-air mixing chamber; and a cold air supply pipe to supply air, cooled by the heat exchange in the LNG vaporizer, to the gas turbine via the moist-air mixing chamber. The method reduces the temperature of air supplied to the gas turbine by condensed water or cold air generated during regasification of LNG through the ambient vaporizer in the marine structure, thereby increasing the efficiency of the gas turbine.
Abstract:
In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
Abstract:
A method to detect, measure or remove trace amounts of condensible vapors in compressed gases. The concentration of droplets detected, measured or removed may be as low as part per trillion. The compressed gas comprising a carrier gas and condensible vapors is discharged through a critical orifice in order to condense the vapors in the form of homogeneous droplets. The droplets are either detected, or their concentration measured or removed from the expanded carrier gas.
Abstract:
A system for compressing hydrogen gas may include a compression stage with a water lubricated and sealed compressor, a gas-liquid separation stage, and a drying stage with an adsorption-type gas dryer. The system receives hydrogen gas via an inlet and discharges dry compressed hydrogen gas via an outlet. The system has an encapsulating vessel defining a cavity within which the separation stage and drying stage are located.
Abstract:
A method for filling at least one buffer container of a hydrogen filling station, the station comprising a fluid circuit linked to said at least one buffer container, the circuit of the filling station comprising a first end linked to at least one source of hydrogen gas, the circuit comprising a second end provided with a transfer conduit intended to be removably connected to a tank, the method being characterized in that it comprises a step of determining the current concentration of at least one impurity in the hydrogen in the buffer container during the filling of same, a step of comparing said current concentration of the impurity relative to a predefined threshold concentration and, when the current concentration of the at least one impurity reaches said threshold concentration, stopping the filling of said buffer container.
Abstract:
In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.