Abstract:
A method for supplying subcooled cryogenic liquid to at least one station (P, P1, P2 . . . ) carrying out machining operations, from a storage tank (10), said tank containing, under a storage pressure higher than atmospheric pressure, the cryogenic fluid in the liquid phase at the bottom of the tank and in the gaseous phase at the top of the tank, said tank being suitable for supplying said station (P) with liquid drawn from the bottom of the tank (10), and for being provided with fluid from the outside, characterised in that it involves: providing at least one heat exchanger, submerged in at least one bath of said cryogenic liquid (20), controlling (3, 4) the level of the or each bath at a predefined level; passing the cryogenic liquid coming from the storage tank (10) through the or each heat exchanger before said liquid arrives at said machining station(s); regulating (1, 6, 12,13, 61, 62 . . . ) the pressure of the cryogenic liquid from the or each submerged exchanger before said liquid arrives at said corresponding machining station.
Abstract:
Provided is an LNG refueling system which can deliver LNG to an LNG-fueled ship and an LNG-refueled ship or can introduce the LNG from an LNG carrier, and more particularly, an LNG refueling system which separately has a low-temperature LNG tank and a high-temperature LNG tank such that both a low-temperature LNG and a high-temperature LNG can be handled, prevents an increase in pressure in the low-temperature LNG tank, and increases stability, and includes a flashing drum to change a high-temperature LNG to a low-temperature LNG such that both the high-temperature LNG and the low-temperature LNG can be supplied. Further, the present invention relates to an LNG refueling system including a boil-off gas treatment system to facilitate treatment of boil-off gas and a boil-off gas treatment method.
Abstract:
A method and apparatus for subcooling a liquid composed of a volatile fluid, for instance, a saturated liquid cryogen, in which two chambers are filled with the fluid and are each initially pressurized after filling so that the fluid is converted to a subcooled liquid. The pressurization of the two chambers is maintained as the subcooled liquid is delivered from each of the two chambers. The filling and the delivery of the two chambers is effected in accordance with a cycle in which one chamber is filled and initially pressurized just prior to the completion of the delivery from the other chamber to allow the continual delivery of the subcooled liquid.
Abstract:
Apparatus for providing a simulated space environment for the testing of articles under low temperature conditions comprising a liquid nitrogen head tank, liquid nitrogen subcooler pumps, a liquid nitrogen subcooler coil, a liquid nitrogen head tank makeup pumps, a low pressure liquid nitrogen storage tank, a high pressure liquid nitrogen storage tank, a liquid nitrogen transfer pump, a vacuum chamber and thermal simulation heat exchanger shrouds contained within the vacuum chamber. Appropriate internal and external piping connects these components so that the apparatus can be operated both in a subcooled pressurized closed loop system as well as in a gravity convection system. While liquid nitrogen in this apparatus will produce a stable uniform temperature of -297.degree. F. within the shroud containing the article to be tested, other liquids with similar low temperature characteristics may be used. A requirement for such liquids when used as a circulating medium with the apparatus herein is that the boiling point thereof at one atmosphere will produce the required test operating temperature.
Abstract:
A method for machining workpieces, having a cryogenic fluid intake in a machining zone, including locating a valve on the line connecting a fluid source to a machining tool in the machining zone, the valve self-regulates the degree of opening according to the pressure required downstream thereof, the valve is located inside a cold box for implementing the cryogenic fluid and provides a fixed and adjustable pressure, and a fixed adjustable flow, to the machining tool, irrespective of the tool that is used, and the number of orifices and the diameter of the fluid ejection orifices in the tool.
Abstract:
A method for subcooling liquid cryogen that is used by a cutting tool uses the steps of dividing liquid phase cryogen between a subcooler feed line and tool feed line. The cryogen in the subcooler feed line is expanded to lower the pressure and decrease the temperature of the cryogen, and the expanded liquid cryogen from the subcooler feed line is added to the interior of a subcooler. A heat exchanger is positioned in the subcooler in contact with the expanded liquid cryogen. The cryogen in the tool feed line is subcooled below its saturation temperature by passing the cryogen through the heat exchanger, and the subcooled cryogen from the heat exchanger is supplied to the cutting tool. As a result, the subcooled cryogen supplied to the cutting tool is substantially 100% liquid cryogen without any vapor content.
Abstract:
Disclosed is an LNG fuel supply system, including: a fuel supply line connected from an LNG storing tank to an engine; a pump provided on the fuel supply line, and configured to change an LNG to the LNG in a supercooled liquid state by compressing the LNG discharged from the LNG storing tank at a high pressure; and a heat exchanger provided on the fuel supply line between the engine and the pump, and configured to phase change the LNG in the supercooled liquid state to the LNG in a supercritical state by heating the LNG in the supercooled liquid state supplied from the pump.
Abstract:
A refrigeration system to be located at carbon dioxide using locations for providing cooled or sub-cooled liquid carbon dioxide at temperatures as low as minus 65° F. to various liquid carbon dioxide dispensing/using devices. The system is capable of being added to virtually every type of carbon dioxide storage vessel used at customer sites, and is especially useful where relatively short carbon dioxide use periods are involved, as the hybrid refrigeration cycle utilizes the liquid carbon dioxide in the storage vessel as a rechargeable refrigeration sink.
Abstract:
A method is provided for producing CO.sub.2 hydrates. In the subject method, CO.sub.2 is first dissolved in water to produce a CO.sub.2 hydrate precursor. The CO.sub.2 hydrate precursor is then mixed with CO.sub.2 gas, resulting in hydrate production. Between the first and second steps, the CO.sub.2 hydrate precursor may optionally be cooled to at least 0.degree. C. and/or CO.sub.2 hydrate nuclei may be introduced into the CO.sub.2 hydrate precursor. The method is carried out in a continuous hydrate production reactor. The subject method finds use in sequestering CO.sub.2 gas emissions in the form of hydrates, where the hydrates are deposited in high pressure, low temperature environments, such as in the ocean at depths greater than 1000 m or in subterranean fresh water aquifers.
Abstract:
Containers are pressurized by adding a controlled amount of liquid cryogen to uncapped containers as they move along an assembly line to a capping station. The liquid cryogen is added to the containers in a stream from a conduit outlet. The amount of cryogen delivered is controlled by sub-cooling the liquid cryogen as it flows across a flow-control restriction in the conduit, thereby ensuring that flow across the restriction is liquid. Control is also achieved by maintaining the temperature of the cryogen delivered from the outlet low enough to avoid detrimental flashing.