Abstract:
A robotic surgery system includes a robotic arm fixed relative to an operating room. The robotic arm comprises a mounting fixture configured to be coupled to a first element of a fluoroscopic imaging system, wherein the first element is one of a source element and a detector element. The system further includes a second element of the imaging system, wherein the second element is the other of the source element and the detector element. The second element is configured to be repositionable relative to the first element and relative to a patient tissue structure. The system further includes a controller operatively coupled to the robotic arm, configured to receive signals from a sensing system. The sensing system detects motion of one or more sensor elements coupled to each of the first and second elements and determine a relative spatial positioning between the elements of the fluoroscopic imaging system.
Abstract:
An insertion system includes an insertion device, a shape sensor, an insertion device holder and an adjustment unit. The insertion device includes an elongated flexible insertion portion. The shape sensor detects a shape of the insertion portion. The insertion device holder holds the insertion device at one end of the insertion portion so that the other end of the insertion portion hangs. The adjustment unit determines an adjustment value to adjust shape detection characteristics of the shape sensor when the insertion device is held by the insertion device holder.
Abstract:
An instrument system that includes an elongate instrument body and an optical fiber sensor is provided. The optical fiber sensor includes an elongate optical fiber that is coupled to the elongate instrument body, wherein a portion of the optical fiber is coupled to the elongate instrument body in a manner to provide slack in the fiber to allow for axial extension of the elongate instrument body relative to the optical fiber.
Abstract:
A surgical tool system according to an embodiment of the current invention includes a surgical tool, and an interferometry system optically coupled to the surgical tool. The surgical tool includes a body section, a sensor section at least one of attached to or integral with the body section, and a surgical section at least one of attached to or integral with the sensor section at an opposing end of the sensor section from the body section. The sensor section comprises an interferometric optical sensor defining a reference distance that changes in response to at least one of a force or a torque when applied to the surgical section of the surgical tool.
Abstract:
Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
Abstract:
An insertion apparatus includes an inserting section, a reference unit, a connecting member, and a first shape sensor. The inserting section is inserted into an insertion target. The reference unit is disposed outside the insertion target. The connecting member includes a movable section configured to move continuously and connects the inserting section and the reference unit. The first shape sensor detects a shape of the connecting member with respect to the reference unit by detecting a movable amount of the connecting member.
Abstract:
A system for orientation assistance and display of an instrument that is inserted or present in the natural or artificially produced hollow cavity (human, animal, object), and that is equipped with one or more sensor units. Multiple measurements of the 3D position of the instrument equipped with one or more sensor units are performed by positioning a measuring system, so that a precise orientation and positioning of the instrument in the body can be computed. The 3D position data are used to compute a virtual image of the instrument synchronously. The virtual images are then either projected directly in exact position onto the body surface of a person or combined in a body surface image (real video camera image of the patient) onto a monitor or superimposed (virtual or augmented reality). The system is especially appropriate for displaying for a user a medical instrument, such as a catheter or a rigid or flexible endoscope, in the body of a person in real time, extracorporeally and in correct position.
Abstract:
A system for localizing one or more medical instruments includes a guidance grid (162) disposed in an operative relationship with a Workstation subject for receiving the one or more medical instruments (102) when deployed. An ultrasound imaging system (110) is configured to image a volume where the one or more medical instruments are deployed. A program module (136) is configured to register positions of the one or more medical instruments, using tracked position information and grid information, to the volume such that the positions of the one or more medical instruments can be visually monitored during a procedure.
Abstract:
The invention relates to an absolute position measuring device, comprising an optical fiber, an optical strain sensor in optical communication with the optical fiber, and a volume of material deforming under influence of a magnetic field. The optical strain sensor is arranged for sensing deformation of the volume of material. Further, the device is arranged for multi-dimensional position measurement.
Abstract:
A bending apparatus includes a shape sensor including a light source, an optical fiber, a detecting part, and a light receiver. The shape sensor utilizes a variation in optical characteristics, which is detected by the detecting part in accordance with a variation of curvature of the optical fiber when the optical fiber is bent. The shape sensor is freely bendable in any direction and having directivity in detection sensitivity for a bending direction. A bending direction restriction mechanism is combined with the shape sensor and has bending directivity including such a property of ease in bending that bending is easy in at least a specific direction other than a direction of a center line, and such a property of difficulty in bending that bending is difficult in directions other than the specific direction.