Abstract:
A relative position detecting system of a tubular device includes a shape sensor and a relative position detecting section. The shape sensor is configured to detect a shape of the tubular device to be inserted into a tubular cavity of an object. The relative position detecting section is configured to detect a relative positional relation between at least one position in a first range in which the shape of the tubular device is detectable by the shape sensor and at least one position in the tubular cavity.
Abstract:
An inserting state acquiring section is configured to acquire inserting state information of an inserting section that is to be inserted into an insertion subject, an insertion subject shape acquiring section is configured to acquire insertion subject shape information that is shape information of the insertion subject, and a positional relation calculating section is configured to be input the inserting state information and the insertion subject shape information and to calculate a positional relation of the inserting section to the insertion subject. When an output section outputs the calculation result of the positional relation calculating section, a control section is configured to control an output state of the calculation result in the output section.
Abstract:
A relative position information acquiring section acquires relative position information, in relation to an insertion subject, of a portion of an inserting section which becomes a position detection object. An image acquisition position calculating section calculates an image acquisition position that is at least one of an image acquisition region, a part of the image acquisition region and a point in the image acquisition region, by use of the relative position and shape information of the insertion subject. A display calculating section sets a display format on the basis of weighting information of the image acquisition position calculated on the basis of a weighting index parameter. An output section outputs the display format and the image acquisition position.
Abstract:
An insertion system having a processor including hardware, configured to: determine, for each of a plurality of times, one or more positions of an insertion section configured to be inserted into an insertion subject; determine, for the each of the plurality of times, state of the insertion section relative to the insertion subject based on the one or more positions for the each of the plurality of times; determine, for the each of the plurality of times, whether an attention state of the insertion section that restricts insertion of the insertion section into the insertion subject has occurred, based on the state of the insertion section relative to the insertion subject determined; and control a monitor to display attention state information indicating the one or more positions of the insertion section at which the occurrence of the attention state of the insertion section is determined over the plurality of times.
Abstract:
To accurately recognize the position and direction of an insertion member, there is provided an insertion system which detects operation support information such as an insertion amount and a rotation amount of the insertion member, and the position and shape of the distal end thereof. The insertion system includes an insertion portion including at least a grasp portion, an insertion portion to be inserted into a specimen, an insertion channel passing from the proximal end of the insertion portion to the distal end, the insertion member to be inserted into the insertion channel, a first state detector which is disposed in the insertion portion and which detects information to calculate at least one of an insertion amount of the inserted insertion member in an insertion direction along a longitudinal direction and a rotation amount of the insertion member around its central axis along the insertion direction, and a calculation unit which calculates operation support information from a detection result by the first state detector.
Abstract:
A tubular insertion device includes a tubular insertion portion including a flexible portion in a predetermined part, bending sensors distributed and arranged in the flexible portion, and an operation support information calculating unit. The operation support information calculating unit extracts operation support information including at least first external force information regarding an external force applied to the tubular insertion portion by a combinational calculation based on detection information from the bending sensors.
Abstract:
An encoder signal processing circuit is connected to encoder heads outputting an encoder signal in accordance with a relative displacement with respect to a corresponding scale in such a way that signals can be transmitted to and received from the encoder heads, and processes encoder signals from the encoder heads. The circuit includes a processing unit and a processing decision unit. The processing unit generates displacement information from the encoder signal. The processing decision unit decides at least one of content of processing for the encoder heads and content of processing on encoder signals read from the encoder heads after starting to read an encoder signal from one of the encoder heads.
Abstract:
An insertion system includes an insertion apparatus including an insertion section, a fiber sensor configured to detect a bend shape of the insertion section, an attitude detector, and an attitude shape calculator. The attitude detector is configured to detect at least one of a first rotational change quantity related to a change quantity of rotation about a longitudinal direction of the insertion apparatus, and a first directional change quantity related to a change quantity of the longitudinal direction. The attitude shape calculator is configured to calculate attitude shape information including at least one of a change quantity of rotation of the bend shape and a change quantity of a direction of the bend shape, based on the bend shape and the at least one of the first rotational change quantity and first directional change quantity.
Abstract:
An insertion system includes an insertion device, a shape sensor, an insertion device holder and an adjustment unit. The insertion device includes an elongated flexible insertion portion. The shape sensor detects a shape of the insertion portion. The insertion device holder holds the insertion device at one end of the insertion portion so that the other end of the insertion portion hangs. The adjustment unit determines an adjustment value to adjust shape detection characteristics of the shape sensor when the insertion device is held by the insertion device holder.
Abstract:
A bending apparatus includes a shape sensor including a light source, an optical fiber, a detecting part, and a light receiver. The shape sensor utilizes a variation in optical characteristics, which is detected by the detecting part in accordance with a variation of curvature of the optical fiber when the optical fiber is bent. The shape sensor is freely bendable in any direction and having directivity in detection sensitivity for a bending direction. A bending direction restriction mechanism is combined with the shape sensor and has bending directivity including such a property of ease in bending that bending is easy in at least a specific direction other than a direction of a center line, and such a property of difficulty in bending that bending is difficult in directions other than the specific direction.