Abstract:
For position sensors, e.g., a fiber-based system, that build a shape of an elongated member, such as a catheter, using a sequence of small orientation measurements, a small error in orientation at the proximal end of the sensor will cause large error in position at distal points on the fiber. Exemplary methods and systems are disclosed, which may provide full or partial registration along the length of the sensor to reduce the influence of the measurement error. Additional examples are directed to applying selective filtering at a proximal end of the elongated member to provide a more stable base for distal measurements and thereby reducing the influence of measurement errors.
Abstract:
Systems and methods for integrating and/or registering a shape sensing fiber in or to various instruments are described herein. Registration fixtures and registration techniques for matching the coordinate system of a fiber to the coordinate system of an elongate instrument or other device are provided. Various systems and methods for integrating a shape sensing fiber into an elongate instrument or other device are also described herein.
Abstract:
For position sensors, e.g., a fiber-based system, that build a shape of an elongated member, such as a catheter, using a sequence of small orientation measurements, a small error in orientation at the proximal end of the sensor will cause large error in position at distal points on the fiber. Exemplary methods and systems are disclosed, which may provide full or partial registration along the length of the sensor to reduce the influence of the measurement error. Additional examples are directed to applying selective filtering at a proximal end of the elongated member to provide a more stable base for distal measurements and thereby reducing the influence of measurement errors.
Abstract:
For position sensors, e.g., a fiber-based system, that build a shape of an elongated member, such as a catheter, using a sequence of small orientation measurements, a small error in orientation at the proximal end of the sensor will cause large error in position at distal points on the fiber. Exemplary methods and systems are disclosed, which may provide full or partial registration along the length of the sensor to reduce the influence of the measurement error. Additional examples are directed to applying selective filtering at a proximal end of the elongated member to provide a more stable base for distal measurements and thereby reducing the influence of measurement errors.
Abstract:
Systems and method are disclosed whereby elongate medical instruments may be registered to adjacent tissue structures and other structures, and may be navigated and operated in a coordinated fashion to maximize ranges of motion, ease of use, and other factors. A method for registering an instrument relative to nearby structures may comprise moving a portion of the instrument between two in situ positions, tracking movement during this movement with both a kinematic model and also a localization sensor based configuration, determining the orientation of the tracked portion relative to both the instrument coordinate system used in the kinematic modeling and also a localization coordinate reference frame, and adjusting the orientation of the instrument coordinate reference frame to minimize the difference between determined orientations using the kinematic model and localization sensors. Methods and configurations for navigating coupled and registered instrument sets are also disclosed.
Abstract:
Systems and method are disclosed whereby elongate medical instruments may be registered to adjacent tissue structures and other structures, and may be navigated and operated in a coordinated fashion to maximize ranges of motion, ease of use, and other factors. A method for registering an instrument relative to nearby structures may comprise moving a portion of the instrument between two in situ positions, tracking movement during this movement with both a kinematic model and also a localization sensor based configuration, determining the orientation of the tracked portion relative to both the instrument coordinate system used in the kinematic modeling and also a localization coordinate reference frame, and adjusting the orientation of the instrument coordinate reference frame to minimize the difference between determined orientations using the kinematic model and localization sensors. Methods and configurations for navigating coupled and registered instrument sets are also disclosed.
Abstract:
Systems and methods for introducing and driving flexible members in a patient's body are described herein. In one embodiment, a robotic method includes positioning a flexible elongated member that has a preformed configuration, wherein at least a part of the flexible elongated member has a first member disposed around it, and wherein the first member includes a first wire for bending the first member or for maintaining the first member in a bent configuration, releasing at least some tension in the first wire to relax the first member, and advancing the first member distally relative to the flexible elongated member while the first member is in a relaxed configuration.
Abstract:
Systems and methods are described herein that improve control of a shapeable or steerable instrument using shape data. Additional methods include preparing a robotic medical system for use with a shapeable instrument and controlling advancement of a shapeable medical device within an anatomic path. Also described herein are methods for altering a data model of an anatomical region.
Abstract:
This disclosure covers various concepts to use for obtaining measurement of tension in catheter pullwires to improve controllability of a robotic surgical system.
Abstract:
For position sensors, e.g., a fiber-based system, that build a shape of an elongated member, such as a catheter, using a sequence of small orientation measurements, a small error in orientation at the proximal end of the sensor will cause large error in position at distal points on the fiber. Exemplary methods and systems are disclosed, which may provide full or partial registration along the length of the sensor to reduce the influence of the measurement error. Additional examples are directed to applying selective filtering at a proximal end of the elongated member to provide a more stable base for distal measurements and thereby reducing the influence of measurement errors.