Abstract:
Various aspects are provided for low-latency wireless local area networks. In a aspect, an access point (AP) may select, from a plurality of wireless stations associated with the AP, a wireless station for the AP to poll. Each of the plurality of wireless stations may be configured to transmit on a channel in response to being polled by the AP. The AP may transmit, at a time selected by the AP, a downlink frame including polling information to the wireless station on the channel, the polling information including a permitted duration for the wireless station to access the channel. The AP may monitor during the permitted duration for the AP to receive an uplink transmission from the wireless station on the channel, the uplink transmission from the wireless station being in response to the polling information received by the wireless station.
Abstract:
Multi-step programming of heat-sensitive non-volatile memory (NVM) in processor-based systems, and related methods and systems are disclosed. To avoid relying on programmed instructions stored in heat-sensitive NVM during fabrication, wherein the programmed instructions can become corrupted during thermal packaging processes, the NVM is programmed in a multi-step programming process. In a first programming step, a boot loader comprising programming instructions is loaded into the NVM. The boot loader may be loaded into the NVM after the thermal processes during packaging are completed to avoid risking data corruption in the boot loader. Thereafter, the programmed image can be loaded quickly into a NV program memory over the peripheral interface using the boot loader to save programming time and associated costs, as opposed to loading the programmed image using lower transfer rate programming techniques. The processor can execute the program instructions to carry out tasks in the processor-based system.
Abstract:
Various apparatuses and methods for transmitting uplink data of an application at a user equipment are provided. In one aspect of the disclosure, uplink data of an application at a user equipment (UE) is transmitted to a network. A first amount of the uplink data expected to be buffered at a radio link control (RLC) layer is determined based on a latency of the application. A second amount of the uplink data available for transmission at the RLC layer is determined based on information provided by a modem of the UE. A data rate of the application is dynamically adjusted based on a difference between the first amount and second amount of the uplink data. In another aspect of the disclosure, an amount of the application data buffered at the RLC layer is maintained to be greater than a predetermined threshold that sets a Happy bit at an unhappy setting. The unhappy setting is communicated to the network, a data rate of the application is increased in response to an increased grant from the network due to the unhappy setting. In another aspect of the disclosure, a maximum modem supported data rate at which the user equipment (UE) transmits uplink data of an application is determined based on an uplink channel capacity estimate, a modem queue length estimate, a codec rate change frequency of the application, and a delay threshold of the modem queue.
Abstract:
Aspects of the present disclosure provide an improved out-of-service (OOS) scan method that can increase the speed of acquiring service while avoiding unnecessary full scan, thus reducing scan time and/or power consumption of a user equipment. In one aspect of the disclosure, if a user equipment fails to acquire service after scanning a most recently used (MRU) list, the user equipment scans for the networks or cells stored in a neighbor list before performing a wider scan or a full scan.
Abstract:
This disclosure provides systems, methods, and apparatus for mobile transmit diversity. In one aspect, a wireless communication apparatus is provided. The wireless communication apparatus includes a transmit circuit configured to transmit wireless communications via either a first antenna or a second antenna. The wireless communication apparatus further includes a receive circuit configured to receive wireless communications using either the first antenna or the second antenna. The wireless communication apparatus further includes a controller configured to switch the transmit circuit and the receive circuit from transmitting and receiving wireless communications via the first antenna to transmit and receive wireless communications via the second antenna in response to detecting that a first receive power level of the first antenna is less than a second receive power level of the second antenna and a difference between the second receive power level and the first receive power level is greater than a threshold.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, a method of wireless communication comprises receiving a first resource request including a first interval for at least one timing-priority task associated with a first radio access technology and a second resource request including a second interval for at least one timing-non-priority task associated with the first radio access technology. The method comprises granting the first resource request and reserving the first interval for the at least one timing-priority task associated with the first radio access technology. The method comprises receiving at least a third resource request including a third interval for at least one timing-priority task associated with a second radio access technology. The method comprises granting the third resource request and reserving the third interval for the at least one timing-priority task associated with the second radio access technology when the first interval and the third interval do not overlap.
Abstract:
Methods, systems, and devices are described for communicating physical layer wireless parameters over an application programming interface. A wireless modem of a wireless device may measure at least one physical layer wireless parameter. The wireless modem may report the at least one physical layer wireless parameter to an application running on the wireless device over an application programming interface between the wireless modem and the application. A behavior of the application may be adapted to control wireless communications between the application and a network based on the at least one physical layer wireless parameter reported by the wireless modem. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatuses for managing one or more radio resources of a multi-subscriber identity module user equipment (UE) are presented. For example, one such method presented by the disclosure may include determining that a wake-up cycle collision condition exists between a first subscription and a second subscription of the UE when the first subscription and second subscription are camped on a same cell. In addition, the example method may include receiving, via a first radio resource of the UE associated with the first subscription, a paging message during a paging block of the cell, wherein a second radio resource of the UE associated with the second subscription is unavailable. Furthermore, the example methodology may include determining, by the first subscription, that the paging message indicates that a page exists for the second subscription and informing the second subscription that the page exists.
Abstract:
Systems and methods for controlling a modem in a computing device are disclosed. In one embodiment, a traffic scheduler is logically positioned between the applications and the net driver of the computing device. The traffic scheduler receives all the packets from the applications and prioritizes the packets in a smart queue. Based on the available uplink bandwidth and/or the queue at the modem, the traffic scheduler passes packets from the smart queue to the net driver to be passed to the modem. In addition to having the benefit of having the higher priority packets be passed before the lower priority packets, the traffic scheduler has the added advantage of allowing the deletion of packets that are no longer needed (e.g., packets generated by a program that the user has closed).
Abstract:
Aspects of the present disclosure are directed to apparatuses and methods capable of selective acknowledgement of packets from an access probe. In one aspect, an apparatus includes: a transceiver configured to receive a set of frames associated with an access probe message from a wireless node, wherein the access probe message includes a plurality of frames, and the set of frames comprises a subset of the plurality of frames; and a processing system configured to generate a selective acknowledgement message based on a determination of whether each frame in the set of frames is received correctly. The acknowledgement includes an indication of receipt for at least one frame in the set of frames. Other aspects, embodiments, and features are also claimed and described.