Abstract:
A memory system includes a sense amplifier electrically coupled to a first bitline and a second bitline associated with a column of a memory array, a bl transistor electrically coupled to the first bitline, wherein the bl transistor is configured to receive as input a first electrical signal from the first bitline, and a blb transistor electrically coupled to the second bitline, wherein the blb transistor is configured to receive as input a second electrical signal from the second bitline, wherein an output of the bl transistor and an output of the blb transistor are electrically coupled together as a common output, and wherein the sense amplifier is configured to receive as an input the common output of the bl transistor and the blb transistor.
Abstract:
A device for communication includes a processor, a transmitter, and a receiver. The processor is configured to generate a traffic advertisement indicating availability of data to be sent to a plurality of devices. The traffic advertisement includes a unicast message addressed to a first device of the plurality of devices. The transmitter is configured to transmit the traffic advertisement during a paging window. The receiver is configured to receive, during a data transmission window that is subsequent to the paging window, a data request from a second device of the plurality of devices. The data request is responsive to the traffic advertisement. The transmitter is further configured to send first data to the second device responsive to the data request.
Abstract:
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.
Abstract:
A hybrid device can be configured to execute operations to select singleton coordinating functionality in a hybrid communication network. In one embodiment, a single master device (e.g., a hybrid device configured as both a registrar and a central access point (CAP)) can be selected. The hybrid device can transmit search messages to detect an existing master device and/or to identify other hybrid devices contending to become the master device. The hybrid device with the preferred device identifier is selected as the master device. In another embodiment, operations for selecting the coordinating functionality are split into two independent stages—a CAP selection stage and a registrar selection stage. In the CAP selection stage, the hybrid device with a preferred device weight (or a preferred device weight and a preferred device identifier) is configured as the CAP. In the registrar selection stage, similar operations can be executed to select the registrar.
Abstract:
Decoded 2n-bit bitcells in memory for storing decoded bits, and related systems and methods are disclosed. In one embodiment, a decoded 2n-bit bitcell containing 2n state nodes is provided. Each state node includes storage node to store decoded bit. Storage node provides bit to read bitline, coupled to decoded word output. Each state node includes active decoded bit input coupled to storage node that receives decoded bit from decoded word to store in storage node in response to write wordline. State node comprised of 2n−1 passive decoded bit inputs, each coupled to one of 2n−1 remaining storage nodes. 2n−1 passive decoded bit inputs receive 2n−1 decoded bits not received by active decoded bit input. State node includes logic that receives 2n−1 decoded bits. Logic retains decoded bit, provides it to passive decoded bit output. Passive decoded word output is coupled to storage node to store decoded bit in storage node.
Abstract:
A hybrid device can implement functionality to automatically configure itself to form a home network with other network devices. If it is determined that the hybrid device is the central access point of a hybrid network, operating parameters are determined for the central access point. The central access point can then operate in conjunction with other non-CAP hybrid devices of the hybrid device to determine how to configure the non-CAP hybrid device. The configuration of the non-CAP hybrid device can be determined based, at least in part, on a communication link performance measurement between the CAP and the non-CAP hybrid device. Furthermore, the hybrid network can also be monitored to ensure that the hybrid devices do not repeatedly or randomly switch between different configurations.
Abstract:
Systems and methods for cache invalidation, with support for different modes of cache invalidation include receiving a matchline signal, wherein the matchline signal indicates whether there is a match between a search word and an entry of a tag array of the cache. The matchline signal is latched in a latch controlled by a function of a single bit mismatch clock, wherein a rising edge of the single bit mismatch clock is based on delay for determining a single bit mismatch between the search word and the entry of the tag array. An invalidate signal for invalidating a cacheline corresponding to the entry of the tag array is generated at an output of the latch. Circuit complexity is reduced by gating a search word with a search-invalidate signal, such that the gated search word corresponds to the search word for a search-invalidate and to zero for a Flash-invalidate.
Abstract:
Various aspects are provided for low-latency wireless local area networks. In a aspect, an access point (AP) may select, from a plurality of wireless stations associated with the AP, a wireless station for the AP to poll. Each of the plurality of wireless stations may be configured to transmit on a channel in response to being polled by the AP. The AP may transmit, at a time selected by the AP, a downlink frame including polling information to the wireless station on the channel, the polling information including a permitted duration for the wireless station to access the channel. The AP may monitor during the permitted duration for the AP to receive an uplink transmission from the wireless station on the channel, the uplink transmission from the wireless station being in response to the polling information received by the wireless station.
Abstract:
A hybrid device can implement functionality to automatically configure itself to form a home network with other network devices. If it is determined that the hybrid device is the central access point of a hybrid network, operating parameters are determined for the central access point. The central access point can then operate in conjunction with other non-CAP hybrid devices of the hybrid device to determine how to configure the non-CAP hybrid device. The configuration of the non-CAP hybrid device can be determined based, at least in part, on a communication link performance measurement between the CAP and the non-CAP hybrid device. Furthermore, the hybrid network can also be monitored to ensure that the hybrid devices do not repeatedly or randomly switch between different configurations.
Abstract:
Methods and apparatuses for communicating in a wireless communication network are disclosed. For example, one method includes determining, by a first access point, a polling schedule for communicating with one or more wireless stations on a first wireless communication channel, the polling schedule for a second access point on a second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, transmission information to the one or more wireless stations, wherein the transmission information comprises information for the one or more wireless stations to receive a transmission from the second access point on the second wireless communication channel. The method further includes transmitting, by the first access point, on the first wireless communication channel, one or more packets to at least one of the one or more wireless stations in accordance with the polling schedule.