Abstract:
A system and method is provided for processing and storing captured data in a wireless communication device based on detected biometric event data. The captured data may be acquired through a data acquisition system with devices or sensors in an integrated or distributed configuration. The captured data may include multimedia data of an event with time, date and/or location stamping, and captured physiological and behavioral biometric event data in response to the event. The captured data may be dynamically stored in a data binding format or as raw data in a local host device or communicated externally to be stored in a remote host or storage. At least one user preference may be specified for linking a biometric event data to the mapped, analyzed, categorized and stored captured data in a database. Captured data may be retrieved by matching biometric event data to at least one user preference from the database.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. An environmental monitoring receiver processes received RF signals over a broadband spectrum and that generates environmental data in response thereto. A processing module processes the environmental data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the environmental data. In an embodiment of the present invention, the environmental monitoring receiver can be implemented via one of the plurality of transceivers when operating in an environmental monitoring mode.
Abstract:
A configurable antenna structure includes a plurality of switches, a plurality of antenna components, and a configuration module. The configuration module is operable to configure the plurality of switches and the plurality of antenna components into a first antenna for receiving a multiple frequency band multiple standard (MFBMS) signal. The configuration module continues processing by identify a signal component of interest of a plurality of signal components of interest within the MFBMS signal. The configuration module continues processing by configuring the plurality of switches and the plurality of antenna components into a second antenna.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein the plurality of transceivers includes at least one cognitive radio transceiver that is configured based on cognitive transceiver configuration data received from a management unit in communication with the multiservice communication device via a control channel.
Abstract:
A data bridge controls packet transfers between network fabrics forming a closed network, such as a vehicular network and a home network. The data bridge includes two or more sets of modules, each of which communicates with a different network fabric. When a packet is to be delivered between network fabrics, a first set of modules, which is used to communicate with a first network fabric, decides whether to accept the packet or discard it. If the packet is accepted, it is delivered to a second set of modules, which is used for communicating with a second network fabric. The second set of modules makes a second, independent decision about whether the packet will be sent to the second network fabric. Each set of modules can base its decision on packet content type, and may discard any packet not to be delivered to the other network.
Abstract:
A wireless communication device communicating with a serving base station in a wireless communication environment may have one or more applications running. When seeking to handover from the serving base station to a target base station, the wireless communication device adjusts the configurations of the applications based on the new communication link properties. Likewise, when an application is loaded that prefers communication link properties that exceeds a current communication link's capabilities, the wireless communication device may seek out and hand over to other communication links. By cooperatively coordinating the functionality of installed applications with communication link properties, the wireless communication device can maintain high levels of device and application functionality.
Abstract:
A network management module includes a network interface module, memory, and a processing module. The network interface module is operable for coupling the network management module to a vehicle communication network. The processing module is operable to manage a global vehicle network communication protocol that includes instituting a content-based network packet processing protocol and managing the vehicle communication network to support the network packet processing protocol. The content-based network packet processing protocol includes determining content type of a packet, determining a processing requirement of the packet, and prioritizing execution of the processing requirement based on the content type.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols. A control channel transceiver transceives control channel data with a remote management unit including local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A wireless transmitter is described herein that provides power wirelessly to an apparatus with high efficiency. For example, the wireless power transmitter may include a class E amplifier that is used as a gate driver for a main power amplifier. This advantageously enables power to be transmitted wirelessly with a 100% theoretical power efficiency and with minimal power loss. Furthermore, electromagnetic interference (EMI) issues are reduced because only low orders of harmonics are applied to the gate of the main power amplifier. A system that incorporates such a wireless transmitter and methods of operating the same are also described herein.
Abstract:
A switching module can route packets between a network fabric and a local network, both of which form a closed network such as a vehicular network. The switching module provides local network management functions, and handles packet transfers between the local network and the network fabric. The switching module uses network information, which can include information about packet content type and network topology, to determine a packet's priority, and an appropriate switching protocol to use for processing and routing packets.