Abstract:
Embodiments of the present disclosure provide methods for patterning rectangular features with a sequence of lithography, atomic layer deposition (ALD) and etching. Embodiment of the present disclosure includes forming first line clusters along a first direction and second line clusters over the first line clusters in a direction traversing the first direction. The first and second line clusters both include core lines formed from a core material, spacers formed from first and second materials by ALD and etching. After formation of the first and second line clusters, rectangular openings can be formed by selectively etching one or two of the core material, the first material or the second material.
Abstract:
Embodiments described herein generally relate to methods for forming gate structures. Various processes may be performed on a gate dielectric material to reduce the K value of the dielectric material. The gate dielectric having a reduced K value may provide for reduced parasitic capacitance and an overall reduced capacitance. The gate dielectric may be modified without thermodynamic constraint.
Abstract:
Methods for etching a material layer disposed on the substrate using a low temperature etching process along with a subsequent low temperature plasma annealing process are provided. In one embodiment, a method for etching a material layer disposed on a substrate includes transferring a substrate having a material layer disposed thereon into an etching processing chamber, supplying an etching gas mixture into the processing chamber, remotely generating a plasma in the etching gas mixture to etch the material layer disposed on the substrate, and plasma annealing the material layer at a substrate temperature less than 100 degrees Celsius.
Abstract:
Methods for forming a transition metal material on a substrate and thermal processing such metal containing material in a cluster processing system are provided. In one embodiment, a method for a device structure for semiconductor devices includes forming a two-dimensional transition metal dichalcogenide layer on a substrate in a first processing chamber disposed in a cluster processing system, thermally treating the two-dimensional transition metal dichalcogenide layer to form a treated metal layer in a second processing chamber disposed in the cluster processing system, and forming a capping layer on the treated metal layer in a third processing chamber disposed in the cluster processing system.
Abstract:
A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include an immersion bake head, which includes an electrode and is configured to be alternated between a hot pedestal and a cold pedestal. The immersion bake head serves as a substrate carrier and applies an electric field to the substrate. The immersion bake head additionally serves to provide and remove process fluid from the substrate using a plurality of fluid conduits.
Abstract:
A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include an electrode assembly and a base assembly. The electrode assembly includes a permeable electrode. The base assembly includes one or more process fluid channels disposed around a circumference of the substrate support surface and configured to fill a process volume with a process fluid. The electrode assembly is configured to apply an electric field to a substrate disposed within the process volume.
Abstract:
Embodiments described herein provide for post deposition anneal of a substrate, having an amorphous carbon layer deposited thereon, to desirably reduce variations in local stresses thereacross. In one embodiment, a method of processing a substrate includes positioning a substrate, having an amorphous carbon layer deposited thereon, in a first processing volume, flowing an anneal gas into the first processing volume, heating the substrate to an anneal temperature of not more than about 450° C., and maintaining the substrate at the anneal temperature for about 30 seconds or more. Herein, the amorphous carbon layer was deposited on the substrate using a method which included positioning the substrate on a substrate support disposed in a second processing volume, flowing a processing gas into the second processing volume, applying pulsed DC power to a carbon target disposed in the second processing volume, forming a plasma of the processing gas, and depositing the amorphous carbon layer on the substrate.
Abstract:
The present disclosure relates to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
Abstract:
Methods for depositing a metal containing material formed on a certain material of a substrate using an atomic layer deposition process for semiconductor applications are provided. In one example, a method of forming a metal containing material on a substrate comprises pulsing a first gas precursor comprising a metal containing precursor to a surface of a substrate, pulsing a second gas precursor comprising a carboxylic acid to the surface of the substrate, and forming a metal containing material selectively on a first material of the substrate. In another example, a method of forming a metal containing material on a substrate includes selectively forming a metal containing layer on a silicon material or a metal material on a substrate than on an insulating material on the substrate by an atomic layer deposition process by alternatively supplying a metal containing precursor and a water free precursor to the substrate.
Abstract:
Embodiments of the disclosure relate to an apparatus and method for processing semiconductor substrates. In one embodiment, a processing system is disclosed. The processing system includes an outer chamber that surrounds an inner chamber. The inner chamber includes a substrate support upon which a substrate is positioned during processing. The inner chamber is configured to have an internal volume that, when isolated from an internal volume of the outer chamber, is changeable such that the pressure within the internal volume of the inner chamber may be varied.