Abstract:
In an embodiment, a paint roller manufacturing system and method uses a fabric-coating applicator to apply a fabric adhesive onto a portion of a perforated paint roller cover fabric material having a plurality of perforations through which adhesive may flow, and into the plurality of perforations and into interstitial spaces of the fabric material, to yield a length of coated fabric. An inner strip and an outer strip are wound about a mandrel in offset relation. A strip-coating applicator is used to apply a strip adhesive to the outer strip as it is wound about the mandrel. Simultaneously with the step of applying the strip adhesive to the outer strip, a portion of the coated paint roller fabric material is received at the outer strip and the length of coated fabric is wound about at least the outer strip to form a paint roller tube.
Abstract:
A system and method are provided for conditioning paint roller cover fabric inline in a continuous paint roller manufacturing process. The system and method provide an inline fabric conditioning unit upstream of the point in the process that the paint roller fabric cover strip is wrapped about the outer side of the outer strip, the fabric conditioning unit including a fabric conditioning device that conditions the paint roller fabric cover strip as it is being fed towards the outer side of the outer strip. The fabric conditioning unit may be used to perforate the fabric, to remove loose fibers from the fabric side of the paint roller fabric cover, to buff the paint roller fabric, and to orient the paint roller cover fibers. The continuous paint roller manufacturing process includes steps of feeding an inner strip and an outer strip towards a mandrel, wrapping the inner strip and the outer strip about the mandrel in offset relation, applying a strip adhesive to at least a portion of an outer side of the inner strip and at least a portion of an outer side of the outer strip, feeding a paint roller fabric cover strip having a fabric side and a backing side towards the outer side of the outer strip, the fabric side comprising loose fibers and attached fibers, forming a paint roller tube by wrapping the paint roller fabric cover strip about the outer strip at a point in the process after the strip adhesive has been applied to the outer side of the outer strip such that the backing side contacts the strip adhesive, applying compression to the paint roller tube, and cutting the paint roller tubes into like lengths.
Abstract:
A paint roller manufacturing system and method are described. In an embodiment, an inner strip of material and an outer strip of material are wound about a mandrel in offset relation. The inner strip of material and the outer strip of material each comprise material that results in a final paint roller which shrinks by less than 2.5 percent of the final paint roller axial length, or which has shrinkage that varies by less +/−0.1%, upon hardening and setting. An adhesive is applied to at least a portion of the outer strip as it is wound about the mandrel. A length of fabric is wound about at least the outer strip to form a paint roller tube, and compression is applied to the paint roller tube while advancing the paint roller tube in a direction parallel to the mandrel. A precision measuring or sensing device is used to control a cutting device causing the cutting device to cut the advancing paint roller tube into pre-selected lengths prior to the paint roller tube hardening and setting.
Abstract:
A paint roller manufacturing system includes a cover dispenser for continuously dispensing a windable width of paint roller cover fabric, a fabric supporting and advancing device for supporting the fabric and maintaining a width-wise dimension of the paint roller cover fabric as the fabric advances, a fabric coating applicator for applying a coating to the back side of the paint roller cover fabric while the fabric supporting and advancing device maintains the fabric in a width-wise dimension, and a compressing roller positioned downstream of the fabric coating applicator and configured to apply a compressive force on the coating after it has been applied to the back side of the paint roller cover fabric and while the fabric is supported by the fabric supporting and advancing device. In two-strip embodiments, first and second strip dispensers continuously dispense a first and second windable width of strip material. A guide system guides the first and second strip coming from the first and second strip dispensers to be wound about a mandrel and guides the coated paint roller cover fabric from the fabric supporting device to be wound about the first and second strips. An adhesive applicator is configured to apply adhesive on substantially all of the outer side of the first and second windable strips and positioned to apply adhesive to the outer side of the first and second windable strips upstream of a location where the coated paint roller cover fabric is wound about the first and second strips.
Abstract:
In a first aspect, a metal-insulator-metal (MIM) stack is provided that includes (1) a first conductive layer comprising a silicon-germanium (SiGe) alloy; (2) a resistivity-switching layer comprising a metal oxide layer formed above the first conductive layer; and (3) a second conductive layer formed above the resistivity-switching layer. A memory cell may be formed from the MIM stack. Numerous other aspects are provided.
Abstract:
Described are methods of making a thermoplastic core paint roller using a composite cover material having a backing made from a compound comprising a polypropylene-based elastomer and calcium carbonate having between 5% and 50% calcium carbonate by weight. One or various compounds of polypropylene and calcium carbonate having between 5% and 66% calcium carbonate by weight may be used to form portions of one or multiple components that make up the paint roller, including, for example, the thermoplastic strips and/or the adhesives. The materials can be assembled in a continuous manufacturing process.
Abstract:
Described are methods of making a thermoplastic core paint roller using a composite cover material having a backing made from a compound comprising a polypropylene-based elastomer and calcium carbonate having between 5% and 50% calcium carbonate by weight. One or various compounds of polypropylene and calcium carbonate having between 5% and 66% calcium carbonate by weight may be used to form portions of one or multiple components that make up the paint roller, including, for example, the thermoplastic strips and/or the adhesives. The materials can be assembled in a continuous manufacturing process.
Abstract:
Described are methods of making a composite cover material for use in a thermoplastic core paint roller, the composite cover material formed by coextruding a smoothly flowing layer comprising a coextrudite comprising polypropylene-based elastomer and a coextrudite comprising polypropylene between a pile material and a roller. Each of coextrudites may comprise calcium carbonate having between 5% and 50% calcium carbonate by weight.
Abstract:
Described are methods of making a paint roller using a composite cover material made from a compound of polypropylene and calcium carbonate having between 5% and 50% calcium carbonate by weight. One or various compounds may be used to form portions of one or multiple components that make up the paint roller, including, for example, the thermoplastic strips, adhesives and/or the backing of a composite cover material. The materials can be assembled in a continuous manufacturing process. Also described are methods of making a paint roller using an adhesive made from a compound of polypropylene and calcium carbonate having between 5% and 66% calcium carbonate by weight, and methods of making a paint roller using preformed strips or core material made from a compound of polypropylene and calcium carbonate having between 5% and 66% calcium carbonate by weight.
Abstract:
Described is a method of making a non-porous composite cover material formed of a pile material and an adhesive layer made from polypropylene or predominantly from polypropylene. A width of the pile material is advanced, and a layer of adhesive is applied thereupon. The adhesive is allowed to set, and the width of material is longitudinally cut into strips of composite cover material. Laminated paint rollers are thereafter made by helically one or two strips of polypropylene or strips made predominantly of polypropylene about a mandrel and applying a layer of adhesive made from polypropylene or predominantly from polypropylene on the strip or strips, and applying a non-porous composite cover material. A compressive force is applied upon the outer surface of the composite cover material to urge the composite cover material, the layer of adhesive and strip or strips of thermoplastic material together against the mandrel, thereby laminating the inner surface of the composite cover material and the strip or strips together and forming a continuous product that can be cut and finished to make paint rollers.