Abstract:
Body bias can be applied to optimize performance in a non-volatile storage system. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased or decreased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
A non-volatile storage system in which body bias can be applied to optimize performance. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
A non-volatile storage system in which body bias can be applied to optimize performance. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
Body bias can be applied to optimize performance in a non-volatile storage system. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased or decreased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
In a first aspect, a metal-insulator-metal (MIM) stack is provided that includes (1) a first conductive layer comprising a silicon-germanium (SiGe) alloy; (2) a resistivity-switching layer comprising a metal oxide layer formed above the first conductive layer; and (3) a second conductive layer formed above the resistivity-switching layer. A memory cell may be formed from the MIM stack. Numerous other aspects are provided.
Abstract:
Body bias can be applied to optimize performance in a non-volatile storage system. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased or decreased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
Techniques are presented for dealing with possible source line bias is an error introduced by a non-zero resistance in the ground loop of the read/write circuits of a non-volatile memory. The error is caused by a voltage drop across the resistance of the source path to the chip's ground when current flows. For this purpose, the memory device includes a source potential regulation circuit, including an active circuit element having a first input connected to a reference voltage and having a second input connected as a feedback loop that is connectable to the aggregate node from which the memory cells of a structural block have their current run to ground. A variation includes a non-linear resistive element connectable between the aggregate node and ground.
Abstract:
Body bias can be applied to optimize performance in a non-volatile storage system. Body bias can be set in an adaptive manner to reduce an error count of an error correcting and/or detecting code when reading data from non-volatile storage elements. Also, a body bias level can be increased or decreased as a number of programming cycles increases. Also, body bias levels can be set and applied separately for a chip, plane, block and/or page. A body bias can be applied to a first set of NAND strings for which operations are being performed by controlling a first voltage provided to a source side of the first set of NAND strings and a second voltage provided to a p-well. A source side of a second set of NAND strings for which operations are not being performed is floated or receives a fixed voltage.
Abstract:
A source line bias error caused by a voltage drop in a source line of a non-volatile memory device during a read or verify operation is addressed. In one approach, a body bias is applied to a substrate of the non-volatile memory device by coupling the substrate to a source voltage or a voltage which is a function of the source voltage. In another approach, a control gate voltage and/or drain voltage, e.g., bit line voltage, are compensated by referencing them to a voltage which is based on the source voltage instead of to ground. Various combinations of these approaches can be used as well. During other operations, such as programming, erase-verify and sensing of negative threshold voltages, the source line bias error is not present, so there is no need for a bias or compensation. A forward body bias can also be compensated.
Abstract:
A non-volatile storage system in which a body bias is applied to a non-volatile storage system to compensate for temperature-dependent variations in threshold voltage, sub-threshold slope, depletion layer width and/or 1/f noise. A desired bias level is set based on a temperature-dependent reference signal. In one approach, a level of the biasing can decrease as temperature increases. The body bias can be applied by applying a voltage to a p-well and n-well of a substrate, applying a voltage to the p-well while grounding the n-well, or grounding the body and applying a voltage to the source and/or drain of a set of non-volatile storage elements. Further, temperature-independent and/or temperature-dependent voltages can be applied to selected and unselected word lines in the non-volatile storage system during program, read or verify operations. The temperature-dependent voltages can vary based on different temperature coefficients.