Abstract:
Systems and methods for enabling fast charging of an electric vehicle at a charging station. An electric vehicle in positioned in a given location for charging and/or discharging. A charging arm comprising a plurality of charging brushes is then positioned relative to the position of the electric vehicle. The plurality of charging brushes on the charging arm is positioned to contact a charging interface of the electric vehicle. The charging brushes are moved relative to the charging interface such that a portion of the charging brushes is removed as a result of the movement.
Abstract:
A method of docking an electric vehicle with a charging station includes periodically transmitting data from the vehicle to the charging station. The transmitted data may include a distance travelled by the vehicle location towards the charging station and its speed. An incremental distance travelled by the vehicle in a time interval between when the data is collected and received is calculated, and the distance corrected based on this calculated value. The relative position of the vehicle with respect to the charging station is determined based on the corrected distance, and a charge head of the charging station is automatically connected with the charging interface of the vehicle based on the determined relative position.
Abstract:
The present disclosure provides systems and methods for enabling fast charging of an electric vehicle at a charging station. In one embodiment, an electric vehicle in positioned in a given location for charging and/or discharging. A charging arm comprising a plurality of charging brushes is then positioned relative to the position of the electric vehicle. The plurality of charging brushes on the charging arm is positioned to contact a charging interface of the electric vehicle. The charging brushes are moved relative to the charging interface such that a portion of the charging brushes is removed as a result of the movement.
Abstract:
A method of docking an electric vehicle with a charging station includes periodically transmitting data from the vehicle to the charging station. The transmitted data may include a distance travelled by the vehicle location towards the charging station and its speed. An incremental distance travelled by the vehicle in a time interval between when the data is collected and received is calculated, and the distance corrected based on this calculated value. The relative position of the vehicle with respect to the charging station is determined based on the corrected distance, and a charge head of the charging station is automatically connected with the charging interface of the vehicle based on the determined relative position.
Abstract:
A battery system for an electric vehicle includes a container having a lid and a plurality of battery cells housed in the container. Each battery cell of the plurality of battery cells may include a pair of tabs to electrically connect to the battery cell, a printed circuit board housed in the container, and a pair of contact elements. The printed circuit board may include circuitry adapted to monitor at least one battery cell. And, each contact element may be attached to the printed circuit board and configured to separably contact a tab of the at least one battery cell to electrically connect the at least one battery cell to the printed circuit board.
Abstract:
A charging station for an electric vehicle having a charging blade may include a charge head configured to electrically connect with a charging blade of a vehicle to charge the vehicle, the charge head extending from a front end to a rear end along a longitudinal axis that extends along a direction of travel of the vehicle. The charge head may include a first housing and a second housing, wherein the first and second housings are (a) symmetrically positioned about the longitudinal axis and (b) separated by a channel that extends from the front end to the rear end of the charge head, the channel being dimensioned to position the charging blade therein. The charge head may further include one or more charging brushes located in each of the first housing and the second housing, wherein each of the one or more charging brushes in each housing is configured to extend into the channel towards the other housing to contact the charging blade positioned in the channel. The charge head may also include one or more sensors located in at least one of the first housing or the second housing, wherein the one or more sensors is configured to detect a presence of the charging blade in the channel.
Abstract:
An electric vehicle may include a battery system with a plurality of battery packs electrically connected together. Each battery pack of the plurality of battery packs may include a plurality of battery cells. The electric vehicle may also include a cooling system configured to cool the plurality of battery packs. The electric vehicle may further include a control system configured to selectively operate the cooling system such that at least one battery pack of the plurality of battery packs is maintained at a temperature different from another battery pack of the plurality of battery packs.
Abstract:
This disclosure provides systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.
Abstract:
The invention provides systems and methods for connecting an electric or hybrid electric vehicle to a charging station. Automated charging and docking processes may be provided. In some embodiments, a vehicle arrival and position may be detected. The vehicle may be charged with a charging arm and some automated vehicle positioning may occur. The vehicle may be charged and released. Fault detection may occur.
Abstract:
A method for charging an electric vehicle at a charging station may include electrically connecting the electric vehicle to the charging station, and determining a desired amount of energy to be provided to the electric vehicle at the charging station. The method may also include determining a layover time of the electric vehicle using a control system associated with the charging station. The layover time may be an amount of time the electric vehicle is expected to be positioned at the charging station. The method may also include calculating a charge current using the control system, wherein the charge current is a value of electric current that is needed to provide the desired amount of energy to the electric vehicle in a time period substantially equal to the layover time. The method may further include charging the electric vehicle using the calculated charge current.