摘要:
A semiconductor memory device capable of controlling a drivability of an overdriver is provided. The semiconductor memory device includes: a first power supply for supplying a normal driving voltage; a memory cell array block; a bit line sense amplifier block for sensing and amplifying voltage difference between bit line pair of the memory cell array block; a first driver for driving a power supply line of the bit line sense amplifier block to a voltage of a node connected with the first power supply in response to a driving control signal; a plurality of second drivers for driving the node to an overdriving voltage higher than the normal driving voltage; and an overdriving drivability controller for selectively activating the second drivers in response to a test-mode drivability control signal inputted during an activation period of an overdriving signal.
摘要:
An integrated dynamic memory includes a memory cell array having memory cells for storing a charge corresponding to an information bit. The memory cell array has a regular cell area with regular memory cells, a first test cell area with first test cells and a second test cell area with second test cells. A control unit is provided for refreshing the charge contents of the regular memory cells with a first refresh time, a control unit is provided for refreshing the charge contents of the first test cells with a second refresh time, and the charge contents of the second test cells with a third refresh time. The first refresh time is shorter than the second refresh time and the latter is shorter than the third refresh time. An evaluation unit is provided for detecting memory cell defects in the first and second test cell areas.
摘要:
Disclosed is a flexible command multiplication scheme for the built-in-self test (BIST) of a high-speed embedded memory array that segments BIST functionality into remote lower-speed executable instructions and local higher-speed executable instructions. A stand-alone BIST logic controller operates at a lower frequency and communicates with a command multiplier using a low-speed BIST instruction seed set. The command multiplier uses offset or directive registers to drive a logic unit or ALU to generate “n” sets of CAD information which are then time-multiplexed to the embedded memory at a speed “n” times faster than the BIST operating speed.
摘要:
Disclosed is a hybrid built-in self test (BIST) architecture for embedded memory arrays that segments BIST functionality into remote lower-speed executable instructions and local higher-speed executable instructions. A standalone BIST logic controller operates at a lower frequency and communicates with a plurality of embedded memory arrays using a BIST instruction set. A block of higher-speed test logic is incorporated into each embedded memory array under test and locally processes BIST instructions received from the standalone BIST logic controller at a higher frequency. The higher-speed test logic includes a multiplier for increasing the frequency of the BIST instructions from the lower frequency to the higher frequency. The standalone BIST logic controller enables a plurality of higher-speed test logic structures in a plurality of embedded memory arrays.
摘要:
A test circuit is disclosed for testing embedded synchronous memories. A BIST controller is used to address the memory and provide reference data that is compared to the memory output. Pipeline registers are used to allow the BIST controller to perform reads and/or writes during every clock cycle. In one aspect, the BIST controller includes a reference data circuit that stores or generates data for comparison to the memory output. A pipeline register is positioned before the reference data circuit or between the reference data circuit and compare circuitry. Additional pipeline registers may be positioned between a compare capture circuit and the compare circuitry. The pipeline registers free the BIST controller from having to wait for a read to complete before starting the next read or write. To reduce the number of pipeline registers needed, a negative-edge BIST controller can be used with a positive-edge memory or vice versa.
摘要:
Test data generator for generating test data patterns for the testing of a circuit having a frequency multiplication circuit, which increases a low clock frequency of an input clock signal received by a test unit with a specific clock frequency multiplication factor. Also provided is a plurality of data registers for storing test data words read from the data registers, and multiplexer that switches through a test data word read from a data register with the high clock frequency of the output clock signal to a data bus in a way dependent on a register selection control datum of a multi-position register selection control data vector.
摘要:
A CPU-based system 10 and method for testing embedded memory. The technique employs the on-chip CPU 20 itself to test the embedded memory 24. An assembly code program is loaded into the device under test (DUT) 12 to test the memories, determine a repair solution, and write out the repair solution and raw failure information to the tester for defect analysis. The test is driven by an external programmable clock that is provided by the tester to allow the DUT 12 to run up to its maximum input clock rate in order to maximize throughput. The test is not dependent on the pattern rate of the tester.
摘要:
A semiconductor memory device having a plurality of pair cells including a pair of cells for storing ordinary data and auxiliary data in which the operation of one cell in a pair cell can be checked. At normal operation time data can be read from or written to a desired cell by activating two word lines at a time. On the other hand, at operation test time data can be read from or written to only one cell in a pair cell by activating a desired word line.
摘要:
Conventionally, when a burn-in test is performed by means of utilizing a memory BIST circuit, a control of a reset operation for the memory BIST circuit is required from an external source. According to the present invention, it is configured that the memory BIST circuit is used for the burn-in test of a memory macro, and a BIST reset control circuit detects a memory BIST test completion signal from the memory BIST circuit, and automatically resets the memory BIST circuit. Thereby, repetitive continuous tests to the memory macro by the memory BIST circuit can be achieved, and the burn-in test by means of utilizing the memory BIST circuit can be performed.
摘要:
A synchronous semiconductor memory device is operable in a normal mode and an alternative mode. The semiconductor device has a command bus for receiving a plurality of synchronously captured input signals, and a plurality of asynchronous input terminals for receiving a plurality of asynchronous input signals. The device further has a clock input for receiving an external clock signal thereon, with the device being specified by the manufacturer to be operated in the normal mode using an external clock signal having a frequency no less than a predetermined minimum frequency. An internal delay locked loop (DLL) clocking circuit is coupled to the clock input terminal and is responsive in normal operating mode to be responsive to the external clock signal to generate at least one internal clock signal. control circuitry in the device is responsive to a predetermined sequence of asynchronous signals applied to the device's asynchronous input terminals to place the device in an alternative mode of operation in which the internal clocking circuit is disabled, such that the device may be operated in the alternative mode using an external clock signal having a frequency less than the predetermined minimum frequency. The alternative mode of operation facilitates testing of the device at a speed less than the minimum frequency specified for the normal mode of operation.