Abstract:
A system for determining the rate at which data has been encoded in the receiver of a variable-rate communications system. The data is received in frames having a fixed number of symbols. Multiple copies of symbols fill the frame when data is encoded at less than the full rate. At an encoding rate of one fourth the full rate, for example, each symbol in the frame is repeated four times. The incoming symbols are provided to multiple paths for decoding. Each path decodes the symbols at one of the possible rates. Error metrics, which describe the quality of the decoded symbols, are extracted and provided to a processor. The error metrics may include Cyclic Redundancy Check (CRC) results, Yamamoto Quality Metrics, and Symbol Error Rates. The processor analyzes the error metrics and determines the most probable rate at which the incoming symbols were encoded.
Abstract:
The invention provides an improved method and apparatus for identifying a bad GSM speech frame. Both the estimated signal-to-noise ratio (ESNR) of the received signal and the pseudo bit error rate (PBER) of a recorded speech signal are used to determine whether or not a speech frame is bad.
Abstract:
An error detector circuit, and an associated method, for a discrete receiver. The error detector circuit indicates bad frames of binary information signals which contain distorted bits of data in numbers so great as to prevent a convolutional decoder from generating, accurately, a decoded signal. When bit errors are detected in numbers beyond a first preselected value of the signal quality of a received signal combined with the detected number of bit errors forms a signal beyond a second preselected value, a bad frame is indicated.
Abstract:
In a receiver, a channel quality metric (220) is determined by demodulating a received second stream of discrete data elements (205) using a received first stream of discrete data elements (203) to produce a demodulated second stream of discrete data elements (212). The demodulated second stream is decoded, leading to an estimate of the second stream of discrete data elements (214). The estimate of the second stream is then re-encoded and the resulting re-encoded stream of discrete data elements (216) is compared with the demodulated second stream to produce the channel quality metric. Derived in this manner, the channel quality metric provides a method for detecting decoding errors in a stream of critical data elements.
Abstract:
In a cellular mobile telephone system of the type having TDMA channels, a plurality of mobile station operate at either a full rate or a half rate. If the mobile stations are operating on the periphery of a cell they are assigned to full rate channels. If the mobile stations are operating in the vicinity of the base station, they are assigned to half rate channels. The mobile station are reassigned from full rate to half rate channels depending upon a measured parameters relating to signal strength or quality, such as the bit error rate of communications between the mobile station and the base station. If the measured bit error rate between the mobile station and a neighboring station is less than the bit error rate between the mobile station and its presently assigned base station, the mobile station is handed off to the neighboring base station.
Abstract:
An error detection system for a discrete receiver. Sequences of bits together forming frames of information comprise the signal received by the discrete receiver. The signal is decoded by a convolutional decoder and is re-encoded by an encoder. Successive portions of nonoverlapping sets of adjacently positioned bits of the re-encoded signal formed by the encoder are compared with corresponding bits of a signal representative of the signal received by the receiver. When excessive numbers of the successive portions of the signals which are compared include bit dissimilarities, a bad frame indication is generated.
Abstract:
The invention relates to a method in a mobile radio system having both digital and analog radio channels. An object of the invention is that a connection established on a digital radio channel often shall be possible to maintain even when the time dispersion on available digital radio channels exceeds the designed maximum time dispersion of equalizers in receiving stations. According the invention equalizers in the receivers of the system may be designed for a smaller maximum time dispersion than the total time dispersion the whole system shall be capable to handle. Instead handoff is made to an other channel when the time dispersion of a used digital channel tends to become too big. When an other digital radio channel with low time dispersion is available handoff is preferably done to this channel. Alternatively or in the absence of such a digital radio channel handoff is performed to an analog radio channel.
Abstract:
A method and apparatus are disclosed for supervising a communication link in a cellular mobile radio system between a base station and a mobile station on a digital voice channel by utilizing digital voice color codes. The base station transmits bursts of communication data, which have an associated digital voice color code, to the mobile station. The mobile station, upon receiving the bursts and decoding the digital voice color code, compares the digital voice color code with a reference digital voice color code received during a call setup or handoff operation. A timer is initiated to time out the communication link after a predetermined period of time in response to the reference digital voice color code not being equivalent to a first predetermined number of the digital voice color codes received with the bursts. The timer is reset and deactuated in response to the reference digital voice color code being equivalent to the first predetermined number of consecutively received digital voice color codes of the bursts received by the mobile station. The communication link is disconnected when the reference digital voice color code is not equivalent to the first predetermined number of consecutive digital voice color codes received during the predetermined period of time clocked by the timer. After the timer is reset and deactivated, the received digital voice color codes are again compared with the stored digital voice color code. In the event that a second predetermined number of consecutively received digital voice color codes are not equivalent to the stored digital voice color code, the timer will be initiated again to possibly time out the communication link as described above.
Abstract:
Systems, methods, and apparatuses are disclosed for choosing the modulation mode using packets transmitted by a sender to a receiver, wherein the packets contain data patterns unknown to the receiver. In some embodiments, the sender sends of a data packet in the most robust mode available, such that the packet can be correctly received by the receiver under even the noisiest conditions. The data contained in the packet is demodulated and decoded. A cyclic redundancy check is performed to ensure that the resultant data is error-free. Once the transmitted payload data is known, the original error coding can be re-applied to the payload data to produce the transmitted bit stream. Comparison of the demodulated bit stream to the regenerated transmitted bit stream yields the pattern of errors. The pattern of errors is analyzed and a higher throughput decoding scheme is chosen based on the results of the analysis.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.