Abstract:
A non-volatile memory device is provided, which includes a first block for storing a first data group including a test data, a second block for storing a second data group including a complementary data to the first data group, a differential sense amplifier for generating an output value based on a difference between two input signals, a diagnostic circuit for performing a failure diagnosis using a value from the differential sense amplifier, and a control circuit which performs control such that a signal based on the test data and the complementary data is set to the input signal of the differential sense amplifier and the diagnostic circuit executes a failure diagnosis of the differential sense amplifier. The non-volatile memory device performs a failure diagnosis with high reliability capable of distinguishing between a failure of sense amplifier and a failure of a memory cell.
Abstract:
A semiconductor device includes a normal test signal generator and a termination signal generator. The normal test signal generator is suitable for generating a first enablement signal and a first pulse signal in response to an external command signal when a first code signal and a second code signal have a predetermined logic combination. Further, the normal test signal generator is suitable for decoding a first test address signal and a second test address signal to generate first to fourth normal test signals. The termination signal generator is suitable for receiving the first pulse signal during an enablement period of the first enablement signal to generate a first termination signal which is enabled when a predetermined signal among the first to fourth normal test signals is generated.
Abstract:
A method, system and memory controller are provided for implementing ECC (Error Correction Codes) control to provide enhanced endurance and data retention of flash memories. The memory controller includes a VT (threshold voltage) monitor to determine VT degradation of cells and blocks; the VT monitor configured to store information about the determined VT degradation; a first ECC engine having a first level of ECC capability; a second ECC engine having a second level of ECC capability, the second level higher than the first level, the second ECC engine having a longer latency than the first ECC engine; a logic to issue a read request to a particular cell/block, and, using the determined VT degradation, use the first ECC engine if the determined VT degradation is less than a threshold and to use the second ECC engine if the determined VT degradation is above the threshold.
Abstract:
An integrated circuit includes a memory and a memory test circuit, which when invoked to test the memory, is configured to generate one or more March tests applied to the memory. The memory test circuit is further configured to construct a table including a first index, a second index, and a first March test of the one or more March tests. The first index is associated with one or more families each characterized by a different length of the one or more March tests. The second index is associated with one or more mechanisms each characterized by a different property of the one or more March tests. The memory test circuit is further configured to generate a second March test from the first March test.
Abstract:
Testing methods in a pre-programmed memory device after it has been assembled into a final customer platform include issuing a self-test command to the memory device, the memory device reporting results of a self-test of pre-programmed data executed responsive to receiving the self-test command, and issuing a self-repair command responsive to the results indicating repair of the pre-programmed data is needed.
Abstract:
Disclosed are a flash memory device and flash memory programming method that equalizes a wear-level. The flash memory device includes a memory cell array, an inversion determining unit to generate a programming page through inverting or not inverting a data page based on a number of ‘1’s and ‘0’s in the data page, a programming unit to store the generated programming page in the memory cell array; and a data verifying unit to read the programming page stored in the memory cell array, to restore the data page from the programming page according to whether an error exists in the read programming page, and to output the restored data page, and thereby can equalize a wear-level of a memory cell.
Abstract:
Systems, methods, and other embodiments associated with at-speed testing of static random access memory (SRAM) are described. In one embodiment, a method includes loading, into a multi-stage pipeline of memory devices, a control pattern for testing a static random access memory (SRAM). The SRAM is tested by generating a test input that is based, at least in part, on the control pattern from the multi-stage pipeline of flip-flops. The test input is provided to the SRAM over a series of clock cycles that are at a core clock speed of the SRAM.
Abstract:
A semiconductor memory device is configured to internally perform a test operation utilizing a random data pattern. The semiconductor memory device includes a random data pattern test unit that operates under control of on-board control logic that also manages normal operation of the semiconductor memory device. The control logic controls test operation of the semiconductor memory device in response to simple commands received from an external device. Therefore, the test time may be reduced more than when a test is entirely controlled by an external device. Furthermore, since the external device does not need to manage the random data pattern, the test cost may be reduced more than when a test is performed under control of the external device.
Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.
Abstract:
A non-volatile memory device includes a plurality of bit lines; a plurality of page buffers corresponding to the bit lines, respectively, and configured to each store a write data; and a control circuit configured to control at least one page buffer of the plurality of page buffers to store the write data of a first logic level and control other ones of the plurality of page buffers to store the write data of a second logic level, wherein the control circuit is further configured to select the at least one page buffer based on an address inputted to the control circuit. Since write data of diverse patterns may be generated within a non-volatile memory device by using a portion of the bits of the address, a test operation of the non-volatile memory device may be performed within a short time.