Abstract:
A driver monitoring method and apparatus is disclosed. The apparatus may control an activation of monitoring devices provided in a vehicle based on detecting a movement of a driver, which is received from a wearable device worn on the driver, and to determine whether the driver is in a normal driving state using information collected from the activated monitoring devices. A driver monitoring method may include determining a movement of a driver based on a wearable device, controlling an activation of monitoring devices provided in a vehicle based on the determining of the movement of the driver, collecting information from the monitoring devices, in response to the monitoring device being activated, and determining whether the driver is in a normal driving state in which the driver is able to drive the vehicle normally using the collected information.
Abstract:
In a system for supervising the safety on a site with at least one movable object, a drowsiness detection system is arranged at the movable object for supplying data related to a drowsiness state of an operator of the movable object. A monitoring system remote from the movable object receives the drowsiness state related data and logs and/or evaluates this drowsiness state related data.
Abstract:
Various implementations relate to an operator monitoring system (OMS). Certain implementations include an OMS coupled to a rotatable portion of a steering wheel assembly of a vehicle. For example, the OMS may include an imaging unit, such as a camera, that is coupled to a central hub portion of the steering wheel assembly. The imaging unit has a field of view directed toward one or more occupants in the vehicle and is configured to capture an image signal corresponding to an imaging area in the field of view. The imaging area can be configured to encapsulate an expected position of one or more vehicle occupants. The OMS also includes one or more processing units in electrical communication with the imaging unit that receives and processes the image signal from the imaging unit to determine an occupant state and, in some implementations, provide feedback based on the determined occupant state.
Abstract:
A computer-implemented method for dynamic vehicle control affecting sleep states of vehicle occupants includes connecting a wearable computing device associated with a vehicle occupant to a vehicle, and determining a state of the vehicle occupant based on physiological data received from at least one of the wearable computing device and the vehicle. The method includes determining a target sleep state of the vehicle occupant based on at least one of the state of the vehicle occupant, the physiological data and vehicle system data, and controlling a vehicle system of the vehicle based on the state of the vehicle occupant in relation to the target sleep state. The method includes monitoring the state of the vehicle occupant including monitoring the physiological data of the vehicle occupant in response to controlling the vehicle system and controlling the vehicle system according to the monitoring in relation to the target sleep state.
Abstract:
A method and system may identify vehicle collisions in real-time or at least near real-time based on statistical data collected from previous vehicle collisions. A user's portable computing device may obtain sensor data from sensors in the portable computing device and compare the sensor data to a statistical model indicative of a vehicle collision. If the portable computing device identifies a vehicle collision based on the comparison, notifications may be sent to emergency contacts and/or emergency personnel to provide assistance to the user.
Abstract:
A method is described including receiving sensory data, determining an indication of initial user impairment based on the sensory data, providing one or more games to the user to determine a level of user impairment, calculating a game score based on user responses to the one or more games and providing an indication of impairment upon a determination that the game score indicates user impairment.
Abstract:
A drive assist apparatus includes an arrival window time calculation unit configured to calculate an arrival window time before the vehicle arrives at a switching completion point, a driving concentration degree estimation unit configured to estimate a driving concentration degree of a driver based on a state of the driver when the arrival window time is equal to or shorter than a predetermined time, and a stimulation providing unit configured to provide a stimulus to the driver according to the driving concentration degree. In a case where the driving concentration degree is equal to or less than a threshold value set in advance, the stimulation providing unit provides a stimulus to the driver, which is stronger than that in a case where the driving concentration degree is greater than the threshold value, or provides a stronger stimulus to the driver in accordance with reduction in the driving concentration degree.
Abstract:
In one embodiment, an apparatus for adaptively interacting with a driver via voice interaction is provided. The apparatus includes a computational models block and an adaptive interactive voice system. The computational models block is configured to receive driver related parameters, vehicle related parameters, and vehicle environment parameters from a plurality of sensors. The computational models block is further configured to generate a driver state model based on the driver related parameters and to generate a vehicle state model based on the vehicle related parameter. The computational models block is further configured to generate a vehicle environment state model based on the vehicle environment parameters. The adaptive interactive voice system is configured to generate a voice output based on a driver's situation and context as indicated on information included within at least one of the driver state model, the vehicle state model, and the vehicle environment state model.
Abstract:
A vehicle (2) has a tachograph (4) which generates a tachograph signal (6) containing information about current clock time and the times of the vehicle's movements, a driver's report input unit (8) generates a signal (10) containing information about driving and rest times for the driver, including monitoring (12) of driver activity which generates an alertness signal (14) containing information about the driver's activity in the vehicle. A safety system (18) has a control unit (20) and an alertness modelling unit (22) which calculates a current and a predicted tiredness values (KSS) for the driver based on the tachograph signal (6) and/or the driver's report signal (10). The tiredness values are conveyed to a control unit which determines control signals (24) for the vehicle's driver support systems.
Abstract:
The low-level consciousness determination system includes curved road determination means for determining whether a road on which the vehicle is traveling is a curved road and determining whether the vehicle is traveling on the outside of the curved road or on the inside of the curved road when the road is the curved road, threshold value setting means for setting different sudden steering determination threshold values when the curved road determination means determines that the road is not the curved road, when the curved road determination means determines that the vehicle is traveling on the outside of the curved road, and when the curved road determination means determines that the vehicle is traveling on the inside of the curved road, and sudden steering detection means for detecting the sudden steering on the basis of the threshold values set by the threshold value setting means after the non-steering state is detected.