Abstract:
An example method includes receiving, at a computing system, a first user input from a user interface during operation of a vehicle and responsive to receiving the first user input, determining a time of reception for the first user input. The method further includes receiving a first set of parameters from the vehicle that correspond to a first parameter identifier (PID). The method also includes determining a time of reception for each parameter, and based on the time of reception for the first user input and the time of reception for each parameter of the first set of parameters, determining a first temporal position for an indicator configured to represent the first user input on a graph of the parameters corresponding to the first PID. The method further includes displaying, on a display interface, the graph of the parameters corresponding to the first PID with the indicator in the first temporal position.
Abstract:
A sensor system and method includes first and second sensing elements, a digital sensors, a host computer and a digital bus. The first sensing element is configured to collect first sensor data and the second sensing element is configured to collect second sensor data. The digital sensor includes a controller that is configured to receive the first and second sensor data and process the first sensor data together with the second sensor data to generate processed data. The host computer is configured to receive the processed data from the digital sensor over the digital bus.
Abstract:
A method and a system for monitoring an aircraft engine (2), including: acquisition and processing part (11) configured to collect a time signal of the exhaust gas temperature residual margin of the aircraft engine (2), acquisition and processing part (11) configured to smooth the time signal thus forming a first curve representing the temperature residual margin, acquisition and processing part (11) configured to identify decreasing pieces in the first curve, acquisition and processing part (11) configured to construct a second curve by concatenation of the decreasing pieces, the second curve being continuous while being restricted to the decreasing pieces of the first curve, acquisition and processing part (11) configured to construct a prediction model from the second curve to determine at least one failure forecast indicator.
Abstract:
Disclosed are methods and apparatus for using black box data to analyze vehicular accidents. The methods include obtaining information from an event data recorder associated with a vehicle and using the data obtained therefrom in determining and analyzing the vehicular accident. Attributes to be analyzed include impact severity, change in velocity, and other desired parameters. Further disclosed are methods to securely communicate the downloaded black box information to a secure location for later analysis and processing.
Abstract:
Disclosed are methods and apparatus for using black box data to analyze vehicular accidents. The methods include obtaining information from an event data recorder associated with a vehicle and using the data obtained therefrom in determining and analyzing the vehicular accident. Attributes to be analyzed include impact severity, change in velocity, and other desired parameters. Further disclosed are methods to securely communicate the downloaded black box information to a secure location for later analysis and processing.
Abstract:
Disclosed are methods and apparatus for using black box data to analyze vehicular accidents. The methods include obtaining information from an event data recorder associated with a vehicle and using the data obtained therefrom in determining and analyzing the vehicular accident. Attributes to be analyzed include impact severity, change in velocity, and other desired parameters. Further disclosed are methods to securely communicate the downloaded black box information to a secure location for later analysis and processing.
Abstract:
A bar graph having different bar widths corresponding to different operating conditions is scanned in the direction of the bar widths. Pulses are generated having pulse widths corresponding to the width of the graph. The number of pulses of each pulse width occurring during the recording time is counted and each of these numbers is printed out furnishing a record corresponding to the amount of time each operating condition occurred during the recording time.
Abstract:
A vehicle (2) has a tachograph (4) which generates a tachograph signal (6) containing information about current clock time and the times of the vehicle's movements, a driver's report input unit (8) generates a signal (10) containing information about driving and rest times for the driver, including monitoring (12) of driver activity which generates an alertness signal (14) containing information about the driver's activity in the vehicle. A safety system (18) has a control unit (20) and an alertness modelling unit (22) which calculates a current and a predicted tiredness values (KSS) for the driver based on the tachograph signal (6) and/or the driver's report signal (10). The tiredness values are conveyed to a control unit which determines control signals (24) for the vehicle's driver support systems.
Abstract:
An asset authoring and delivery system generates a number of authored assets. Each of the authored assets includes a number of asset content objects that are logically associated with one or more components included in the item of manufacture. The authored assets generated by the asset authoring and delivery system are formatted and communicated to one or more remote devices logically associated with the item of manufacture. Authored assets may be provided responsive to one or more sensed characteristics, for instance vehicle operational parameters, vehicle operation and/or driver behavior, and may be customized to a make and/or model of vehicle.
Abstract:
An odometer monitor for monitoring the connectivity status of a mobile data terminal to a vehicle is a software module defined in a data processor of a vehicle tracking device. The monitor is operable to listen for arrival of successive timed poll events from a mobile data terminal connected to a vehicle, listen for arrival of and storing each of successive odometer update values from a vehicle information bus of the vehicle that corresponds to arrival of each of the successive timed poll events, compare next odometer update values to last stored odometer update values, calculate the distances between the compared odometer update values, make a determination of connectivity status of the mobile data terminal relative to the vehicle based on whether or not the values of the calculated distances ascend to above the value of a preset maximum distance, and report the connectivity status to the mobile data terminal.