摘要:
A system for electrospinning a fiber matrix on a tubular member includes at least one nozzle, a tubular member in a spaced relationship to the at least one nozzle, and a fluid source for pressurizing a lumen of the tubular member. An electrical potential is applied between the at least one nozzle and either the tubular member or fluid from the fluid source. The electrical potential draws at least one fiber from the at least one nozzle to the tubular member.
摘要:
Apparatus and method for harvesting selected vessels in the body of a patient include manual manipulation of a rigid dissecting endoscope and the reconfiguration thereof to facilitate tissue dissection and tissue dilation in the formation of an anatomical space about the vessel within which side-branch vessels may be manipulated in preparation for severance and removal of the vessel from the anatomical space.
摘要:
The present invention relates to a method for preparation of an artificial blood vessel using a tube-type porous biodegradable scaffold having a double layered structure and a stem cell, and an artificial blood vessel made by the same. Specifically, the present invention relates to a method for preparation of an artificial blood vessel by separately seeding a stem cell onto the inner membrane and an outer membrane of a tube-type porous biodegradable scaffold having a double layered structure, wherein the inner membrane and the outer membrane having different biodegradable polymer nano-fiber arrangements are continuously linked, and by inducing differentiation; and an artificial blood vessel made by the same.
摘要:
An artificial blood vessel that can be transplanted to blood vessels with a small diameter, can be adjusted to an arbitrary size of a diameter, improves in invasiveness when a graft is taken, and overcomes the problem on the provision of a graft is provided. An artificial blood vessel prepared from a decellularized tubular structure, which is prepared by processing a decellularized, sheet-like blood vessel (decellularized blood vessel sheet) into a roll structure, and a tissue adhesive, wherein a portion which is contacted with blood that flows within the artificial blood vessel consists of the tissue of the tunica intima lined with the tissue of the tunica media whereas a portion of the sheet that overlaps when the sheet is processed into a roll structure (overlap width) consists of the tissue of the tunica media and wherein a tissue adhesive is applied to the overlap width.
摘要:
Method and apparatus for mapping the shape and dimensions of a 3-dimensional body, by applying to the 3-dimensional body a stretchable covering configured and dimensioned such that in its stretched condition it tightly engages and conforms to the shape and dimensions of the 3-dimensional body to be mapped. The stretchable covering carries a plurality of reference devices, such as bands and/or markers which are at know or determinable reference locations in an initial condition of the covering, and which change their locations in the stretched condition of the stretchable covering according to the shape and dimensions of the 3-dimensional body covered thereby. The locations of the markers on the stretchable covering are determined after the stretchable covering has been applied to the 3-dimensional body, and are utilized to produce a map of the shape and dimensions of the 3-dimensional body.
摘要:
A system for producing a tissue-engineered material includes a hollow member and a mechanical stimulating unit. The hollow member is adapted to be implanted in a peritoneal cavity, and is to be positioned in the peritoneal cavity in a manner that a part of the hollow member contacts an inner wall surface of the peritoneal cavity for enabling formation of a biological tissue that encapsulates the hollow member. The mechanical stimulation unit is coupled to the hollow member and configured to provide a periodic mechanical stimulus to the biological tissue by periodically causing the hollow member to expand and contract. A method for producing the aforesaid tissue-engineered material is also disclosed.
摘要:
Medical systems, devices and methods for creation of autologous tissue valves within a mammalian body are disclosed. One example of a device for creating a valve flap from a vessel wall includes an elongate tubular structure having a proximal portion and a distal portion and a longitudinal axis; a first lumen having a first exit port located on the distal portion of the elongate tubular structure; a second lumen having a second exit port located on the distal portion of the elongate tubular structure; a recessed distal surface on the distal portion of the elongate tubular structure, wherein the recessed distal surface is located distally to the first exit port; and an open trough on the recessed distal surface extending longitudinally from the first exit port.
摘要:
A system for producing a tissue-engineered material includes a hollow member and a mechanical stimulating unit. The hollow member is adapted to be implanted in a peritoneal cavity, and is to be positioned in the peritoneal cavity in a manner that a part of the hollow member contacts an inner wall surface of the peritoneal cavity for enabling formation of a biological tissue that encapsulates the hollow member. The mechanical stimulation unit is coupled to the hollow member and configured to provide a periodic mechanical stimulus to the biological tissue by periodically causing the hollow member to expand and contract. A method for producing the aforesaid tissue-engineered material is also disclosed.
摘要:
A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
摘要:
The invention relates a multilayer preform obtained by electro-spinning, which preform is suitable as a scaffold for a prosthesis, which preform comprises layers of different diameter microfibers. The present invention also relates to a method of producing said preform. The present invention also relates to the use of the present preform as a substrate for growing human or animal tissue thereon. The present invention furthermore relates to a method for growing human or animal tissue on a substrate, wherein the present preform is used as the substrate.