Abstract:
An image sensor pixel array comprises a plurality of image pixel units to gather image information and a plurality of phase detection auto-focus (PDAF) pixel units to gather phase information. Each of the PDAF pixel units includes two of first image sensor pixels covered by a shared micro-lens. Each of the image pixel units includes four of second image sensor pixels adjacent to each other, wherein each of the second image sensor pixels is covered by an individual micro-lens. A coating layer is disposed on the micro-lenses and forms a flattened surface across the whole image sensor pixel array to receive incident light.
Abstract:
An alignment layer for a liquid crystal on silicon (LCOS) display includes a nano-particle layer. In a particular embodiment the nano-particle layer includes a lower nano-layer and an upper nano-layer, each formed onto oxide layers of the LCOS display. In a more particular embodiment, the lower nano-layer and the upper nano-layer are offset printed onto the oxide layers.
Abstract:
A chip scale package (CSP) structure for an image sensor comprises an image sensor chip, wherein the image sensor chip comprises a semiconductor substrate having a top surface to receive light, a plurality of color filters disposed over the top surface, and a plurality of micro lenses disposed on the plurality of color filters. A low refractive index material is disposed over the image sensor chip, wherein the low refractive index material covers the plurality of micro lenses, and wherein a refractive index of the low refractive index material is lower than a refractive index of the plurality of micro lenses. A cover glass is disposed directly on the low refractive index material, wherein no air gap is between the cover glass and the low refractive index material, and between the low refractive index material and the image sensor chip. Therefore, the cover glass is fully supported by the low refractive index material without any dams.
Abstract:
A method of image sensor package fabrication includes providing an image sensor, including a pixel array disposed in a semiconductor material, and a first transparent shield adhered to the semiconductor material. The pixel array is disposed between the semiconductor material and the first transparent shield. A light blocking layer is deposited and disposed between lateral edges of the pixel array and lateral edges of the first transparent shield, and a second transparent shield is placed on the image sensor package, where the light blocking layer is disposed between the first transparent shield and the second transparent shield.
Abstract:
A method of image sensor package fabrication includes providing an image sensor, including a pixel array disposed in a semiconductor material, and a first transparent shield adhered to the semiconductor material. The pixel array is disposed between the semiconductor material and the first transparent shield. A light blocking layer is deposited and disposed between lateral edges of the pixel array and lateral edges of the first transparent shield, and a second transparent shield is placed on the image sensor package, where the light blocking layer is disposed between the first transparent shield and the second transparent shield.
Abstract:
An image sensor package includes an image sensor with a pixel array disposed in a semiconductor material. A first transparent shield is adhered to the semiconductor material, and the pixel array is disposed between the semiconductor material and the first transparent shield. The image sensor package further includes a second transparent shield, where the first transparent shield is disposed between the pixel array and the second transparent shield. A light blocking layer is disposed between the first transparent shield and the second transparent shield, and the light blocking layer is disposed to prevent light from reflecting off edges of the first transparent shield into the pixel array.
Abstract:
An alignment layer for a liquid crystal on silicon (LCOS) display includes a nano-particle layer. In a particular embodiment the nano-particle layer includes a lower nano-layer and an upper nano-layer, each formed onto oxide layers of the LCOS display. In a more particular embodiment, the lower nano-layer and the upper nano-layer are offset printed onto the oxide layers.
Abstract:
A PDAF imaging system includes an image sensor and an image data processing unit. The image sensor has an asymmetric-microlens PDAF detector that includes: (a) a plurality of pixels forming a sub-array having at least two rows and two columns, and (b) a microlens located above each of the plurality of pixels and being rotationally asymmetric about an axis perpendicular to the sub-array. The axis intersects a local extremum of a top surface of the microlens. The image data processing unit is capable of receiving electrical signals from each of the plurality of pixels and generating a PDAF signal from the received electrical signals. A method for forming a gull-wing microlens includes forming, on a substrate, a plate having a hole therein. The method also includes reflowing the plate.
Abstract:
A color filter array for use on a color image sensor includes an oxide grid having sidewalls arranged to define openings in the oxide grid. Each one of the openings is to be disposed over a corresponding pixel cell of the color image sensor. Oxide support structures are disposed in an interior region of each opening in the oxide grid over a corresponding pixel cell of the color image sensor. The openings in the oxide grid are filled with color filter material of a corresponding color filter. A surface tension between each oxide support structure and the surrounding color filter material of the color filter is adapted to provide uniform thickness for the color filters within the corresponding openings in the oxide grid.
Abstract:
A backside illuminated image sensor includes a semiconductor layer having a back-side surface and a front-side surface. The semiconductor layer includes a pixel array region including a plurality of photodiodes configured to receive image light through the back-side surface of the semiconductor layer. The semiconductor layer also includes a peripheral circuit region including peripheral circuit elements for operating the plurality of photodiodes that borders the pixel array region. The peripheral circuit elements emit photons. The peripheral circuit region also includes a doped semiconductor region positioned to absorb the photons emitted by the peripheral circuit elements to prevent the plurality of photodiodes from receiving the photons.