Abstract:
Disclosed in embodiments of the present disclosure are a lens array and a manufacturing method thereof. The manufacturing method for the lens array includes the following steps: depositing a first film layer on a first substrate, and manufacturing and forming a tapered structure array through a patterning process; and depositing a second film layer on the tapered structure array, thereby covering a top of a tapered structure, so as to form a lenticular structure array, wherein a top of a lenticular structure is a cambered surface. The lens array is manufactured by the above manufacturing method, wherein the lens array includes a plurality of lenses arranged in an array, and the arch heights of the plurality of lenses are the same and larger than or equal to a set value.
Abstract:
The present invention describes methods and apparatuses for creating superposition shape images by superposed base and revealing layers of lenslet gratings. The superposition shape images form a message recognizable by a human observer or by an image acquisition and computing device such as a smartphone. The superposition shape images may be created by different superposition techniques ranging from 1D moiré, 2D moiré and level-line moiré superposition techniques to lenticular image and phase shift superposition techniques. Moiré superposition techniques enable creating superposition shape images at different apparent depth levels. Applications comprise the protection of documents and valuable articles against counterfeits, the creation of eye-catching advertisements as well as the decoration of buildings and exhibitions.
Abstract:
A wafer-scale apparatus and method is described for the automation of forming, aligning and attaching two-dimensional arrays of microoptic elements on semiconductor and other image display devices, backplanes, optoelectronic boards, and integrated optical systems. In an ordered fabrication sequence, a mold plate comprised of optically designed cavities is formed by reactive ion etching or alternative processes, optionally coated with a release material layer and filled with optically specified materials by an automated fluid-injection and defect-inspection subsystem. Optical alignment fiducials guide the disclosed transfer and attachment processes to achieve specified tolerances between the microoptic elements and corresponding optoelectronic devices and circuits. The present invention applies to spectral filters, waveguides, fiber-optic mode-transformers, diffraction gratings, refractive lenses, diffractive lens/Fresnel zone plates, reflectors, and to combinations of elements and devices, including microelectromechanical systems (MEMS) and liquid crystal device (LCD) matrices for adaptive, tunable elements. Preparation of interfacial layer properties and attachment process embodiments are taught.
Abstract:
The present invention provides a microlens array, a manufacturing method thereof, an image acquisition device, and a display device. The manufacturing method of a microlens array includes steps of: providing a substrate; forming a plurality of accommodation grooves on the substrate; instilling a colloidal prepolymer into each of the plurality of accommodation grooves, so that a top surface of the prepolymer forms a curved surface protruding outwards; and curing the prepolymer, so that the prepolymer in each of the plurality of accommodation groove is cured to form a microlens unit, thereby obtaining the microlens array. The manufacturing method provided by the present invention is simple, is applicable to a large-scale microlens array, and the manufactured microlens array has better precision and uniformity.
Abstract:
The present technology relates to a lens array and a manufacturing method therefor, a solid-state imaging apparatus, and an electronic apparatus that can improve the AF performance while suppressing the deterioration of image quality. A lens array includes microlenses that are formed corresponding to phase difference detection pixels that are provided to be mixed in imaging pixels. Each of the microlenses is formed such that a lens surface thereof is a substantially spherical surface, the microlens has a rectangular shape in a planar view and four corners are not substantially rounded, and a bottom surface in vicinity of an opposite-side boundary portion that includes an opposite-side center portion of a pixel boundary portion in a cross-sectional view is higher than a bottom surface in vicinity of a diagonal boundary portion that includes a diagonal boundary portion. The present technology is applicable to a lens array of a CMOS image sensor, for example.
Abstract:
[Problem] To provide a photosensitive resin composition for forming a member having a curved shape, which is soluble in an alkaline aqueous solution, and with which a pattern can be formed comparatively freely, wherein a lens member formed by using the said composition is excellent in heat resistance, formability of a curved shape, and transparency. [Solution] The said photosensitive resin composition for forming a member having a curved shape comprises (A) a polymer, (B) a polymerizable compound having a group which thermally reacts with the said polymer, and (C) a polymerization initiator.
Abstract:
There is provided a method of manufacturing a microlens array substrate with improved manufacturing yield and high quality, the method including: forming a groove part along an outer edge of a first area on a surface of a substrate; forming a mask layer to cover a side of the surface, forming a plurality of openings in the first area, and forming openings along the outer edge of the first area; performing isotropic etching on the substrate through the mask layer, forming a plurality of recesses in the first area, and forming recesses across a boundary part between the first area and the groove part; removing the mask layer from the substrate; forming a light transmission material layer that has a refractive index, which is different from a refractive index of the substrate, to cover the side of the surface of the substrate and to bury the plurality of recesses; and planarizing an upper surface of the light transmission material layer.
Abstract:
As an apparatus for manufacturing a micro lens array includes a first substrate having a plurality of cavities formed at locations corresponding to locations of the plurality of micro lenses, and a second substrate having a lower softening point than the first substrate and bonded on the first substrate to close the plurality of cavities, wherein a portion of the second substrate located on the cavities swells convexly by air trapped in the cavities expanding its volume in response to a temperature above the softening point of the second substrate being applied, to form domes corresponding to a shape of the micro lenses, and the micro lens array is cast using the second substrate having the formed domes as a mold.
Abstract:
Membrane suspended optical elements include a structured substrate including a plurality of apertures defined therein and an array of optical elements, each of the optical elements being suspended by membrane within one of the apertures.
Abstract:
The present disclosure provides a contiguous microlens array, which consists of a plurality of touching microlenses, wherein the adjacent microlenses are connected to each other to form a contiguous microlens array and curvatures of every angle cross section of each microlens are the same. The shape of the curved surface of a microlens in the microlens array is selectively adjusted according to its position in the array and the incident angle of light incident thereto.