Abstract:
The present technology relates to a lens array and a manufacturing method therefor, a solid-state imaging apparatus, and an electronic apparatus that can improve the AF performance while suppressing the deterioration of image quality. A lens array includes microlenses that are formed corresponding to phase difference detection pixels that are provided to be mixed in imaging pixels. Each of the microlenses is formed such that a lens surface thereof is a substantially spherical surface, the microlens has a rectangular shape in a planar view and four corners are not substantially rounded, and a bottom surface in vicinity of an opposite-side boundary portion that includes an opposite-side center portion of a pixel boundary portion in a cross-sectional view is higher than a bottom surface in vicinity of a diagonal boundary portion that includes a diagonal boundary portion. The present technology is applicable to a lens array of a CMOS image sensor, for example.
Abstract:
The present disclosure relates to a solid-state imaging element, a manufacturing method, and an electronic apparatus, in which irregular reflection of light inside a solid-state imaging element package can be suppressed. In the solid-state imaging element, a plurality of pixels is planarly arranged, a connection portion utilized for connection to the outside is provided on a more outer side than an imaging region, and an open portion that is opened up to the connection portion from a light incident surface side of the imaging region where light is incident is formed. Additionally, a plurality of protruding portions periodically arranged is formed on a counterbore surface that is a surface inside the open portion excluding the connection portion. The present technology can be applied to, for example, a back-illuminated type or layered CMOS image sensor.
Abstract:
The present technique relates to a solid-state image pickup element and an electronic apparatus each of which enables a pad to be formed in a shallow position while reduction of a quality of a back side illumination type solid-state image pickup element is suppressed. The solid-state image pickup element includes a pixel substrate in which a light condensing layer for condensing incident light on a photoelectric conversion element, a semiconductor layer in which the photoelectric conversion element is formed, and a wiring layer in which a wiring and a pad for outside connection are formed are laminated on one another, and at least a part of a first surface of the pad is exposed through a through hole completely extending through the light condensing layer and the semiconductor layer. The present technique, for example, can be applied to a back side illumination type CMOS image sensor.
Abstract:
The present technique relates to a solid-state image pickup element and an electronic apparatus each of which enables a pad to be formed in a shallow position while reduction of a quality of a back side illumination type solid-state image pickup element is suppressed. The solid-state image pickup element includes a pixel substrate in which a light condensing layer for condensing incident light on a photoelectric conversion element, a semiconductor layer in which the photoelectric conversion element is formed, and a wiring layer in which a wiring and a pad for outside connection are formed are laminated on one another, and at least a part of a first surface of the pad is exposed through a through hole completely extending through the light condensing layer and the semiconductor layer. The present technique, for example, can be applied to a back side illumination type CMOS image sensor.