摘要:
A magneto-resistance effect element comprising a spin valve film including a first magnetic layer, a second magnetic layer and a non-magnetic layer interposed between the first magnetic layer and the second magnetic layer. Among the first and the second magnetic layers, in at least one of the magnetic layers, close-packed faces of crystal grains which constitute the magnetic layer are isotropically dispersed. Such a magnetic layer, by setting a film thickness of an under layer having an identical crystal structure with the magnetic layer at 2.0 nm or less and by dispersing isotropically close-packed faces of crystal grains constituting the under layer, can be obtained with reproducibility. According to a magneto-resistance effect element comprising such a spin valve film, while maintaining a large MR change rate, for example, magnetostriction constant can satisfy such a low magnetostriction as 1.times.10.sup.-6 or less. Further, excellent soft magnetic property can be provided.
摘要:
A magnetoresistive element comprises an n-type emitter layer, a p-type base layer, and an n-type collector layer, the three layers being so arranged as to form a pn-junction with each other, an emitter ferromagnetic layer formed in contact with the n-type emitter layer, a base ferromagnetic layer formed in contact with the p-type base layer, a power source for applying, by way of the emitter ferromagnetic layer, a forward bias voltage between the n-type emitter layer and the p-type base layer, a power source for applying a backward bias voltage to the n-type collector layer and the p-type base layer and a power source for applying, by way of the base ferromagnetic layer, a bias voltage so as to inject minority carriers into the p-type base layer.
摘要:
A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer. The nonmagnetic metal intermediate layer includes a resistance adjusting layer including at least one of oxides, nitrides and fluorides, and the thin-film insertion layer includes at least one element selected from the group consisting of iron (Fe), cobalt (Co) and nickel (Ni).
摘要:
A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a≦75 at %, b≦75 at %, and c≦63 at %), or formed of an alloy having a body-centered cubic crystal structure.
摘要翻译:磁阻装置包括磁化固定层,磁化自由层,形成在磁化固定层和磁化自由层之间的非磁性中间层,以及允许感测电流在基本垂直于堆叠平面的方向上流动的电极,包括 磁化钉扎层,非磁性中间层和无磁化层。 磁化固定层和磁化自由层中的至少一个基本上由式FeaCobNic(其中a + b + c = 100原子%,a≦̸ 75原子%,b≦̸ 75在 %,c≦̸ 63at%),或由具有体心立方晶体结构的合金形成。
摘要:
A magnetoresistive head has a magnetoresistive film including first and second magnetization free layers, an intermediate layer sandwiched between the first and second magnetization free layers, an underlayer and a protective layer, which are stacked in the order of the underlayer, the first magnetization free layer, the intermediate layer, the second magnetization free layer and the protective layer and arranged to be substantially perpendicular to the air-bearing surface, and a first electrode connected with the underlayer and a second electrode connected with the protective layer, the electrodes allowing a current to flow in a direction substantially perpendicular to the plane. The intermediate layer includes a stacked film of a metal layer/an oxide layer, a stacked film of a metal layer/a nitride layer, a sandwich film of a metal layer/an oxide layer/a metal layer, or a sandwich film of a metal layer/a nitride layer/a metal layer.
摘要:
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
摘要:
There is provided a magnetoresistance effect element capable of precisely defining the active region in a CPP type MR element and of effectively suppressing and eliminating the influence of a magnetic field due to current from an electrode, and a magnetic head and magnetic reproducing system using the same. The active region of the MR element is defined by the area of a portion through which a sense current flows. Moreover, the shape of the cross section of a pillar electrode or pillar non-magnetic material for defining the active region of the element is designed to extend along the flow of a magnetic flux so as to efficiently read only a signal from a track directly below the active region. When the magnetic field due to current from the pillar electrode can not be ignored, the magnetic flux from a recording medium asymmetrically enters yokes and the magnetization free layer of the MR element to some extent. In expectation of this, if the cross section of the pillar electrode is designed to be asymmetric so as to extend along the flow of the magnetic flux, the regenerative efficiency is improved.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
There is provided a magnetoresistance effect element capable of precisely defining the active region in a CPP type MR element and of effectively suppressing and eliminating the influence of a magnetic field due to current from an electrode, and a magnetic head and magnetic reproducing system using the same. The active region of the MR element is defined by the area of a portion through which a sense current flows. Moreover, the shape of the cross section of a pillar electrode or pillar non-magnetic material for defining the active region of the element is designed to extend along the flow of a magnetic flux so as to efficiently read only a signal from a track directly below the active region. When the magnetic field due to current from the pillar electrode can not be ignored, the magnetic flux from a recording medium asymmetrically enters yokes and the magnetization free layer of the MR element to some extent. In expectation of this, if the cross section of the pillar electrode is designed to be asymmetric so as to extend along the flow of the magnetic flux, the regenerative efficiency is improved.
摘要:
A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a≦75 at %, b≦75 at %, and c≦63 at %), or formed of an alloy having a body-centered cubic crystal structure.
摘要翻译:磁阻装置包括磁化固定层,磁化自由层,形成在磁化固定层和磁化自由层之间的非磁性中间层,以及允许感测电流在基本垂直于堆叠平面的方向上流动的电极,包括 磁化钉扎层,非磁性中间层和无磁化层。 磁化固定层和无磁化层中的至少一个基本上由二元或三元合金形成,由二元或三元合金表示,其由式Fe / SUB>(其中a + b + c = 100at%,a≤75at%,b <= 75at%,c <= 63at%),或者由具有体心立方 晶体结构。