Abstract:
A nonvolatile memory device includes a semiconductor well region of first conductivity type on a semiconductor substrate and a common source diffusion region of second conductivity type extending in the semiconductor well region and forming a P-N rectifying junction therewith. A byte-erasable EEPROM memory array is provided in the semiconductor well region. This byte-erasable EEPROM memory array is configured to support independent erasure of first and second pluralities of EEPROM memory cells therein that are electrically connected to the common source diffusion region.
Abstract:
A non-volatile memory device includes a first sensing line, a first word line, a depletion channel region, and impurity regions. The first sensing line and the first word line are formed adjacent to each other in parallel on a substrate. The first sensing line and the first word line have a tunnel oxide layer, a first conductive pattern, a dielectric layer pattern and a second conductive pattern sequentially stacked on the substrate. The depletion channel region is formed at an upper portion of the substrate under the first sensing line. The impurity regions are formed at upper portions of the substrate exposed by the first sensing line and the first word line.
Abstract:
Example embodiments are directed to a mask ROM, a mask ROM embedded EEPROM and a method of fabricating the same. The mask ROM may include a select gate pattern and a memory gate pattern disposed between a source region and a drain region at each of the on-cell and the off-cell. The on-cell may include a cell diffusion region between the select gate pattern and the memory gate pattern.
Abstract:
An electrically erasable and programmable read only memory (EEPROM) device and a method of manufacturing the EEPROM device are provided. First and second gate structures having the same structure are formed on a tunnel insulating layer formed on a substrate, such that the first and second gate structures are spaced apart from each other. A common source region is formed at a portion of the substrate located between the first and second gate structures. First and second drain regions are formed at first and second portions of the substrate adjacent to the first and second gate structures, respectively. Thus, the EEPROM device is manufactured including first and second transistors that have the same structure and may alternately serve as a memory transistor and a selection transistor according to an applied signal.
Abstract:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first junction region and a second junction region. An insulated floating gate is disposed on the substrate. The floating gate at least partially overlaps the first junction region. An insulated program gate is disposed on the floating gate. The program gate has a curved upper surface. The semiconductor device further includes an insulated erase gate disposed on the substrate and adjacent the floating gate. The erase gate partially overlaps the second junction region.
Abstract:
A mask read-only memory (ROM) cell, a method for fabricating the mask ROM cell, a NOR-type mask ROM device, and a method for fabricating the NOR-type mask ROM device are disclosed. A mask ROM cell includes a substrate including an ON cell region and an OFF cell region, a first gate electrode disposed in the ON cell region, and a second gate electrode disposed in the OFF cell region. The mask ROM cell also includes a first impurity region disposed in the substrate proximate a sidewall of the first gate electrode, wherein a portion of the first impurity region is disposed under the first gate electrode; and a second impurity region disposed the substrate proximate a sidewall of the second gate electrode, wherein no portion of the second impurity region is disposed under the second gate electrode.
Abstract:
An electrically erasable programmable read-only memory (EEPROM) device includes an EEPROM cell located on a semiconductor substrate, the EEPROM cell including a memory transistor and a selection transistor. A source region and a drain region are located on the semiconductor substrate adjacent to opposite sides of the EEPROM cell, respectively, and a floating region is positioned between the memory transistor and the selection transistor. The source region includes a first doped region, a second doped region and a third doped region, where the first doped region surrounds a bottom surface and sidewalls of the second doped region, and the second doped surrounds a bottom surface and sidewalls of the third doped region. Also, a second impurity concentration of the second doped region is higher than that of the first doped region and lower than that of the third doped region.
Abstract:
A non-volatile memory device includes a memory cell block, a first switching block, and a second switching block. A plurality of memory cells are arranged in the memory cell block and each of the memory cells includes a memory transistor having a floating gate and a control gate and is connected to a local bit line and includes a selection transistor connected to the memory transistor in series that is connected to a source line. The first switching block selectively connects a global bit line to the local bit line and the second switching block controls the memory cells in the memory cell block in units of a predetermined number of bits. The first switching block includes at least two switching devices connected in parallel between the global bit line and the local bit line.
Abstract:
A mask read-only memory (ROM) includes a dielectric layer formed on a substrate and a plurality of first conductive lines formed on the dielectric layer. A plurality of diodes are formed in the first conductive lines, and a plurality of final vias are formed for a first set of the diodes each representing a first type of memory cell, with no final via being formed for a second set of diodes each representing a second type of memory cell. Each of a plurality of second conductive lines is formed over a column of the diodes.
Abstract:
A non-volatile memory integrated circuit device and a method of fabricating the same are disclosed. The non-volatile memory integrated circuit device includes a semiconductor substrate, a tunneling dielectric layer, a memory gate and a select gate, a floating junction region, a bit line junction region and a common source region, and a tunneling-prevention dielectric layer pattern. The tunneling dielectric layer is formed on the semiconductor substrate. The memory gate and a select gate are formed on the tunneling dielectric layer to be spaced apart from each other. The floating junction region is formed within the semiconductor substrate between the memory gate and the select gate, the bit line junction region is formed opposite the floating junction region with respect to the memory gate, and a common source region is formed opposite the floating junction region with respect to the select gate. The tunneling-prevention dielectric layer pattern is interposed between the semiconductor substrate and the tunneling dielectric layer, and is configured to overlap part of the memory gate.