Abstract:
An electrode to be used for an electrostatic lens, wherein the electrode at least includes: a first substrate having a first through-hole and a second substrate having a second through-hole; the first substrate having a thickness smaller than the second substrate; the first through-hole having a diameter smaller than the second through-hole; the second substrate having a specific resistance smaller than the first substrate, wherein the first substrate and the second substrate are superimposed so that the first through-hole and the second through-hole are aligned relative to each other. Notching taking place near any of the through-holes in a dry etching process can be reduced, and thus, the through-holes can be formed accurately.
Abstract:
A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses.
Abstract:
Provided is an electrostatic lens array, including multiple substrates arranged with intervals, each of the multiple substrates having an aperture for passing a charged particle beam, in which: in a travelling direction of the charged particle beam, a peripheral contour line formed by any one of surfaces of the multiple substrates other than an upper surface of a most upstream substrate and a lower surface of a most downstream substrate has a protruding portion protruding from a peripheral contour line of one of the upper surface of the most upstream substrate and the lower surface of the most downstream substrate; and a position of the protruding portion is defined by a position regulating member, whereby parallelism is adjustable so that a surface including the protruding portion is parallel to a surface to be irradiated with the charged particle beam after passing through the aperture.
Abstract:
A charged particle beam drawing apparatus includes an electrostatic lens including an electrode member and configured to project the plurality of charged particle beams onto the substrate via the electrode member. In the electrode member are formed a plurality of first openings via which the plurality of charged particle beams pass, and a plurality of second openings different from the plurality of first openings, a total area of the plurality of second openings being not smaller than a total area of the plurality of first openings.
Abstract:
An electrode to be used for an electrostatic lens, wherein the electrode at least includes: a first substrate having a first through-hole and a second substrate having a second through-hole; the first substrate having a thickness smaller than the second substrate; the first through-hole having a diameter smaller than the second through-hole; the second substrate having a specific resistance smaller than the first substrate, wherein the first substrate and the second substrate are superimposed so that the first through-hole and the second through-hole are aligned relative to each other. Notching taking place near any of the through-holes in a dry etching process can be reduced, and thus, the through-holes can be formed accurately.
Abstract:
One embodiment disclosed relates to a multiple-beamlet electron beam imaging apparatus for imaging a surface of a target substrate. A beam splitter lens array is configured to split the illumination beam to form a primary beamlet array, and a scanning system is configured to scan the primary beamlet array over an area of the surface of the target substrate. In addition, a detection system configured to detect individual secondary electron beamlets. Another embodiment disclosed relates to a method of imaging a surface of a target substrate using a multiple-beamlet electron beam column. Other features and embodiments are also disclosed.
Abstract:
An electrostatic charged particle beam lens in a charged particle beam exposure apparatus includes a first electrode having at least one aperture; a second electrode having at least one aperture; and a supporting body disposed between the first electrode and the second electrode, the supporting body being configured to support the first electrode and the second electrode such that the first electrode and the second electrode are electrically separated from each other. The supporting body is made of alkali-free glass or low-alkali glass.
Abstract:
The invention relates to a multiple beam charged particle optical system, comprising an electrostatic lens structure with at least one electrode, provided with apertures, wherein the effective size of a lens field effected by said electrode at a said aperture is made ultimately small. The system may comprise a diverging charged particle beam part, in which the lens structure is included. The physical dimension of the lens is made ultimately small, in particular smaller than one mm, more in particular less than a few tens of microns. In further elaboration, a lens is combined with a current limiting aperture, aligned such relative to a lens of said structure, that a virtual aperture effected by said current limiting aperture in said lens is situated in an optimum position with respect to minimizing aberrations total.
Abstract:
The invention provides a lens system for a plurality of charged particle beams. The lens system comprises an excitation coil providing a magnetic flux to a pole piece unit having a first pole piece, a second pole piece and at least two openings for charged particle beams, wherein the two openings are arranged in one row, thereby forming a lens row, and wherein the pole piece unit has an elongated shape.
Abstract:
The present invention relates, in general, to a deflector for microcolumns for generating electron beams, and, more particularly, to a deflector capable of scanning or shifting electron beams or functioning as a stigmator using a magnetic field. The deflector (100) according to the present invention includes one or more deflector electrodes. Each of the deflector electrodes includes a core (12) made of a conductor or a semiconductor, and a coil (11) wound around the core (12).