Abstract:
Generally, the described techniques provide for efficiently transmitting uplink signals to a base station using shared antennas associated with different power classes. A first device may be in communications with a base station using local antennas and may identify a second device having auxiliary antennas available for transmitting uplink signals to the base station. The local and auxiliary antennas may be associated with different power classes, and the first device may transmit a message to a base station indicating that the first device is capable of transmitting using antennas associated with different power classes. The first device may then receive configurations from a base station of different transmit powers to transmit on the antennas associated with the different power classes, and the first device may transmit uplink signals to the base station in accordance with the different transmit power configurations.
Abstract:
Certain aspects of the present disclosure generally relate to radio frequency (RF) front-end circuitry. For example, certain aspects provide an apparatus having a first converter circuit configured to upconvert a first baseband (BB) signal to a first RF signal based on a mode of operation, and a second converter circuit configured to upconvert a second BB signal to a second RF signal based on the mode of operation. The apparatus also includes a first RF weight adjustment circuit configured to selectively apply an amplitude weight or a phase weight to at least one of the first RF signal or the second RF signal based on the mode of operation, and a controller configured to control a power state of the second converter circuit in dependence on the mode of operation.
Abstract:
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for transmitting, from a user equipment (UE) to a base station, a report indicating a beamforming capability of the UE, receiving, from a base station, a configuration for a plurality of control resource sets (CORESETs) based at least in part on the report, selecting multiple CORESETs of the plurality of CORESETs, and monitoring the selected multiple CORESETs during a monitoring occasion. In some examples, the UE may also monitor one or more unselected CORESETs that have a quasi co-location relationship with one of the selected CORESETs.
Abstract:
Systems and methods for providing indications about the TX RF non-linear impairments are disclosed. In accordance with some implementations, a first device (UE or base station) estimates EVM indications for the signal and determines if the EVM indications is above a threshold. The first device may transmit the estimated TX non-linearity indications math as AM-AM, AM-PM, Volterra coefficients, and/or other performance metrics to a second device, that transmitted the signal, when it is determined that the EVM indications is above the threshold. Systems and methods for wireless communication impairment correction are also disclosed wherein, in accordance with some implementations, a first device receives estimated TX non-linearity indications such as AM-AM, AM-PM, and/or Volterra coefficients from a second device and performs non-linear correction of a transmit signal for the second receiver device based at least in part on the EVM indications. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. A mobile device receives a control signal having a first bandwidth. The mobile device receives a data signal having a second bandwidth different from the first bandwidth. The control signal and the data signal are received over a single carrier frequency. The data signal is transmitted after the control signal such that the data signal and control signal are separated by a time interval. The time interval is based on a switching latency of the mobile device.
Abstract:
Systems, methods, apparatuses, and computer-readable storage media for managing power consumption of a mobile device are disclosed. The systems, method, apparatus, and computer-readable storage medium may cause the base station to identify an energy metric associated with a mobile device, and to configure the transmission between the base station and the mobile device based at least in part on the energy metric. The configuration of the transmission may reduce the power consumption of the mobile device for processing the transmission.
Abstract:
A wireless device is described. The wireless device includes an antenna. The wireless device also includes a hybrid transformer. The wireless device further includes a frequency matching termination port. The frequency matching termination port provides impedance matching with the antenna at multiple frequencies. The frequency matching termination port may include multiple resistors, inductors and capacitors that can be switched in/out.
Abstract:
Exemplary embodiments are directed to systems, devices, and methods for mitigating effects of transmit signal leakage. A transceiver may include a transmitter and a receiver. The transceiver may further include a multi-tap analog adaptive filter coupled to each of the transmitter and the receiver and configured to generate an estimated transmit leakage signal based on at least a portion of a transmit signal from the transmitter and an error signal from the receiver.
Abstract:
Methods, systems, and devices are described for reducing interference for wireless communication in a wireless device with multiple receive antennas. In aspects for reducing interference, a combined signal may be generated by combining a plurality of received signals from a plurality of respective receive antennas of the wireless device, for example, using one or more different types of combining A common distortion of the plurality of received signals may be estimated based at least in part on the combined signal, and interference reduction may be performed on one or more of the plurality of received signals based at least in part on the estimated common distortion.
Abstract:
Passive switched-capacitor (PSC) filters are described herein. In one design, a PSC filter implements a second-order infinite impulse response (IIR) filter with two complex first-order IIR sections. Each complex first-order IIR section includes three sets of capacitors. A first set of capacitors receives a real input signal and an imaginary delayed signal, stores and shares electrical charges, and provides a real filtered signal. A second set of capacitors receives an imaginary input signal and a real delayed signal, stores and shares electrical charges, and provides an imaginary filtered signal. A third set of capacitors receives the real and imaginary filtered signals, stores and shares electrical charges, and provides the real and imaginary delayed signals. In another design, a PSC filter implements a finite impulse response (FIR) section and an IIR section for a complex first-order IIR section. The IIR section includes multiple complex filter sections operating in an interleaved manner.