Abstract:
A device includes a glass substrate and a capacitor. The capacitor includes a first metal coupled to a first electrode, a dielectric structure, and a via structure comprising a second electrode of the capacitor. The first metal structure is separated from the via structure by the dielectric structure.
Abstract:
A resonator includes a piezoelectric core, a set of electrodes, and at least one ground terminal. The electrodes are arranged on the piezoelectric core and also includes at least one input electrode having a first width and at least one output electrode having a second width that differs from the first width. The ground terminal is also on the piezoelectric core.
Abstract:
An integrated circuit device includes a piezoelectric substrate having a first surface and a second surface opposite the first surface. The device also includes a first electrode and a second electrode on the first surface of the piezoelectric substrate, the first electrode having a first width and the second electrode having a second width. The device further includes a third electrode and a fourth electrode on the second surface of the piezoelectric substrate, the third electrode having a third width that is substantially the same as the second width, and the fourth electrode having a fourth width that is substantially the same as the first width. The first and third electrodes operate as part of a first portion of a microelectromechanical systems (MEMS) resonator, and the second and fourth electrodes operate as part of a second portion of the MEMS resonator.
Abstract:
Metal-insulator-metal (MIM) capacitors arranged in a pattern to reduce inductance, and related methods, are disclosed. In one aspect, circuits are provided that employ MIM capacitors coupled in series. The MIM capacitors are arranged in a pattern, wherein a MIM capacitor is placed so as to be electromagnetically adjacent to at least two MIM capacitors, and so that a current of the MIM capacitor flows in a direction opposite or substantially opposite of a direction in which a current of each adjacent MIM capacitor flows. The magnetic field generated at metal connections of each MIM capacitor rotates in an opposite direction of the magnetic field of each electromagnetically adjacent MIM capacitor, and thus a larger proportion of magnetic fields cancel out one another rather than combining, reducing equivalent series inductance (ESL) compared to linear arrangement of MIMs.
Abstract:
An interposer for a chipset includes multilayer thin film capacitors incorporated therein to reduce parasitic inductance in the chipset. Power and ground terminals are laid out in a staggered pattern to cancel magnetic fields between conductive vias to reduce equivalent series inductance (ESL).
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.
Abstract:
A particular device includes a substrate and a spiral inductor coupled to the substrate. The spiral inductor includes a first conductive spiral and a second conductive spiral overlaying the first conductive spiral. A first portion of an innermost turn of the spiral inductor has a first thickness in a direction perpendicular to the substrate. The first portion of the innermost turn includes a first portion of the first conductive spiral and does not include the second conductive spiral. A second portion of the innermost turn includes a first portion of the second conductive spiral. A portion of an outermost turn of the spiral inductor has a second thickness in the direction perpendicular to the substrate that is greater than the first thickness. A portion of the outermost turn includes a second portion of the first conductive spiral and a second portion of the second conductive spiral.
Abstract:
A multi-mode bandpass filter is described. The bandpass filter includes a first multi-directional vibrating microelectromechanical systems resonator. The bandpass filter also includes a second multi-directional vibrating microelectromechanical systems resonator. The first multi-directional vibrating microelectromechanical systems resonator is in a parallel configuration. The second multi-directional vibrating microelectromechanical systems resonator is in a series configuration.
Abstract:
Aspects of the disclosure are directed to a bandpass filter including a first, second, third and fourth resonators, wherein the second and third resonators are in parallel, wherein the first resonator includes a first and second terminals, wherein the second resonator includes a second resonator top terminal and a second resonator bottom terminal, wherein the third resonator includes a third resonator top terminal and a third resonator bottom terminal, wherein the fourth resonator includes a third terminal and a fourth terminal; wherein the first terminal is coupled to the second resonator top terminal, wherein the second terminal is coupled to the third resonator top terminal, wherein the third terminal is coupled to the third resonator bottom terminal, wherein the fourth terminal is coupled to the second resonator bottom terminal; a first inductor coupled to the first and third terminals; and a second inductor coupled to the second and fourth terminals.