Abstract:
Embodiments of an evolved Node-B (eNB), user equipment (UE), and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described herein.
Abstract:
Embodiments of a User Equipment (UE) and methods for packet based device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, UE may be enabled for proximity services and may be configured to receive signaling from an enhanced node B (eNB) indicating resources allocated for D2D discovery. The UE may configure a discovery packet in accordance with a predetermined configuration to have at least a discovery payload and a cyclic-redundancy check (CRC). The discovery payload may include discovery-related content. The UE may be configured to transmit the discovery packet on at least some of the indicated resources for receipt by a receiving UE. In some embodiments, a demodulation reference signal (DMRS) may be selected to indicate a payload size and/or MCS of the discovery packet's payload.
Abstract:
Techniques, apparatus and methods are disclosed that enable reduced signaling overhead in a fifth generation (5G) wireless system. The system includes support for asynchronous uplink transmission, resource pool configuration, acknowledgement response and retransmission. For example, in a Type-1 transmission scheme, a user equipment (UE) selects one resource within the resource pool and transmits data in the uplink on the selected resource. In a Type-2 transmission scheme, a UE selects one resource within a scheduling request (SR) region in the resource pool, transmits the SR for the resource which contains the resource allocation for data transmission, and transmits the uplink data on the resource which is indicated in the SR information. In a Type-3 transmission scheme, a UE selects a resource within the SR region, transmits the SR on the selected resource with information on the resource selected for subsequent data transmission and transmits on the indicated resource if it receives an acknowledgment, in response to its transmitted SR.
Abstract:
Systems, apparatus, user equipment (UE), evolved node B(eNB), and methods are described for machine-type communications (MTC) with early termination of repeated transmissions. In MTC implementations with narrow bandwidth, significant numbers of retransmissions may be scheduled based on channel quality measurements. If data is successfully decoded at a receiving device while a significant number of retransmissions remain, system resources are wasted. Embodiments described herein thus use downlink control messaging or intermediate hybrid automatic repeat request (HARQ) messaging for early termination of repeated messages.
Abstract:
Methods, systems, devices, and apparatus including evolved node B (eNB) or user equipment (UE) for machine-type communications (MTC) with narrowband deployment are described. One embodiment includes control circuitry configured to determine a super-frame structure, where the super-frame structure is set, at least in part, on a bandwidth of the narrowband deployment, with a plurality of downlink physical channels areas multiplexed as part of a first downlink super-frame of the super-frame structure. Such an embodiment may include communication circuitry configured to transmit the first downlink super-frame comprising the plurality of multiplexed downlink physical channels, receive a plurality of uplink physical channels, and receive, in response to transmission of the first downlink super-frame, a hybrid automatic repeat request (HARQ) acknowledgement (ACK) or negative acknowledgement (NACK).
Abstract:
Examples may include techniques to enable user equipment (UE) to establish a device-to-device (D2D) communication link for D2D communications with another UE. In some examples, the D2D communications may occur when either both or at least one UE is within a coverage area for a wireless wide area network (WWAN). In some other examples, both UEs may be outside of the coverage area and may utilize a third UE to provide or relay information for use to establish the D2D communication link.
Abstract:
Embodiments of user equipment (UE) and methods for transmit power control for device-to-device (D2D) discovery operations and D2D communication in a cellular network are generally described herein. In some embodiments, the UE may configure a discovery signal for transmission on discovery resources from a configured resource pool for D2D discovery. The discovery signal may be transmitted at a transmit power level based on a relative location of the discovery resources with respect to uplink cellular resources in the frequency domain.
Abstract:
A user equipment (UE) may communicate channel state information in a wireless network. The UE may include transceiver circuitry to receive orthogonal frequency division multiple access (OFDMA) signals from an Enhanced node B (eNB). The UE may include processing circuitry to derive one or more principal eigen beams from the received OFDMA signals. The principal eigen beams may have a rank greater than or equal to one. The processing circuitry may derive quantized eigen beams from the principal eigen beams. The processing circuitry may select, in response to the quantized eigen beams, a subset of available antenna ports on the eNB for receiving from the eNB and transmitting to the eNB. The UE may communicate to the eNB a bit pattern of the quantized eigen beams and at least one of a wideband channel quality indicator (CQI) or a subband CQI conditioned on the quantized eigen beams.
Abstract:
A user equipment (UE) enables synchronous peer-to-peer communication between devices for out of network coverage and partial network coverage scenarios. The UE performs a synchronization procedure and selects a spectrum resource within an uplink (UL) spectrum for device-to-device (D2D) communication. The UE, representing a synchronization source, generates timing information and synchronization signals for synchronizing a group of wireless communication devices (peer UEs) with the UE in a local synchronization area. The UE transmits, in selected or pre-allocated time or frequency resources, a synchronization signal including the timing information in order to synchronize devices in the local synchronization area.
Abstract:
The present disclosure describes embodiments of apparatuses, systems, and methods for cross sub-frame by enhanced physical downlink control channel (EPDCCH) transmissions for scheduling of physical downlink share channel (PDSCH) transmissions one or more subframes after the EPDCCH transmission. Cross subframe scheduling may be useful for machine type communication (MTC) user equipment (UE) with reduced bandwidth support including half duplex type MTC UE operating at 1.4 MHz bandwidth.