摘要:
A field effect transistor on an active region of a semiconductor substrate includes a vertically protruding thin-body portion of the semiconductor substrate and a vertically oriented gate electrode at least partially inside a cavity defined by opposing sidewalls of the vertically protruding portion of the substrate. The transistor further includes an insulating layer surrounding an upper portion of the vertically oriented gate electrode and a laterally oriented gate electrode on the insulating layer and connected to a top portion of the vertically oriented gate electrode. Accordingly, a T-shaped gate electrode is defined having a lateral portion on a top surface of a semiconductor substrate and having a vertical portion at least partially inside a cavity defined by opposing sidewalls of a vertically protruding portion of the substrate.
摘要:
In an embodiment, a 3-dimensional flash memory device includes: a gate extending in a vertical direction on a semiconductor substrate; a charge storing layer surrounding the gate; a silicon layer surrounding the charge storing layer; a channel region vertically formed in the silicon layer; and source/drain regions vertically formed on both sides of the channel region in the silicon layer. Integration can be improved by storing data in a 3-dimensional manner; a 2-bit operation can be performed by providing transistors on both sides of the gate.
摘要:
Provided are a semiconductor device including a FinFET having a metal gate electrode and a fabricating method thereof. The semiconductor device includes: an active area formed in a semiconductor substrate and protruding from a surface of the semiconductor substrate; a fin including first and second protrusions formed of a surface of the active area and parallel with each other based on a central trench formed in the active area and using upper surfaces and sides of the first and second protrusions as a channel area; a gate insulating layer formed on the active area including the fin; a metal gate electrode formed on the gate insulating layer; a gate spacer formed on a sidewall of the metal gate electrode; and a source and a drain formed in the active area beside both sides of the metal gate electrode. Here, the metal gate electrode comprises a barrier layer contacting the gate spacer and the gate insulating layer and a metal layer formed on the barrier layer.
摘要:
Multi-bit nonvolatile memory devices and related methods of manufacturing the same are described. In some multi-bit nonvolatile memory devices, a semiconductor substrate has a recessed region defined therein. An insulating layer, which can include an ONO layer, is configured to store data within programming regions therein, and covers a sidewall and a lower surface of the recess region. A gate electrode is on the insulating layer in the recessed region. At least one pair of impurity regions are in the semiconductor substrate. The impurity regions adjoin a side surface of the insulating layer in the recess region and form a relative angle that is less than 120° therebetween with respect to a center of the gate electrode.
摘要:
In a semiconductor device having a multi-bridge-channel, and a method for fabricating the same, the device includes first and second semiconductor posts protruding from a surface of a semiconductor substrate and having a source and a drain region, respectively, in upper side portions thereof, channel semiconductor layers connecting upper side portions of the first and second semiconductor posts, a gate insulation layer on the channel semiconductor layers and the semiconductor substrate, the gate insulation layer surrounding at least a portion of the channel semiconductor layers, a gate electrode layer on the gate insulation layer to enclose at least a portion of a region between the channel semiconductor layers, and junction auxiliary layers formed between the channel semiconductor layers, the junction auxiliary layers contacting the gate electrode layer and upper side portions of the first and second semiconductor posts, and having a same width as the channel semiconductor layers.
摘要:
In a semiconductor memory device and method, phase-change memory cells are provided, each including a plurality of control transistors formed on different layers and variable resistance devices formed of a phase-change material. Each phase-change memory cell includes a plurality of control transistors formed on different layers, and a variable resistance device formed of a phase-change material. In one example, the number of the control transistors is two. The semiconductor memory device includes a global bit line; a plurality of local bit lines connected to or disconnected from the global bit line via local bit line selection circuits which correspond to the local bit lines, respectively; and a plurality of phase-change memory cell groups storing data while being connected to the local bit lines, respectively. Each of the phase-change memory cells of each of the phase-change memory cell groups comprises a plurality of control transistors formed on different layers, and a variable resistance device formed of a phase-change material. In addition, the semiconductor memory device has a hierarchical bit line structure that uses a global bit line and local bit lines. Accordingly, it is possible to increase both the integration density of the semiconductor memory device and the amount of current flowing through each of the phase-change memory cells.
摘要:
Unit cells of metal oxide semiconductor (MOS) transistors are provided including an integrated circuit substrate and a MOS transistor on the integrated circuit substrate. The MOS transistor has a source region, a drain region and a gate region, the gate region being between the source region and the drain region. First and second channel regions are provided between the source and drain regions. The channel region is defined by first and second spaced apart protrusions in the integrated circuit substrate separated by a trench region. The first and second protrusions extend away from the integrated circuit substrate and upper surfaces of the first and second protrusions are substantially planar with upper surfaces of the source and drain regions. A gate electrode is provided in the trench region extending on sidewalls of the first and second spaced apart protrusions and on at least a portion of surfaces of the first and second spaced apart protrusions.
摘要:
Gate-all-around integrated circuit devices include first and second source/drain regions on an active area of an integrated circuit substrate. The first and second source/drain regions form p-n rectifying junctions with the active area. A channel region extends between the first and second source/drain regions. An insulated gate electrode surrounds the channel region.
摘要:
In one embodiment, a method of fabricating a semiconductor device having a crystalline semiconductor layer includes preparing a semiconductor substrate and forming a preliminary active pattern on the semiconductor substrate. The preliminary active pattern includes a barrier pattern and a non-single crystal semiconductor pattern. A sacrificial non-single crystal semiconductor layer covers the preliminary active pattern and the semiconductor substrate. By crystallizing the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern, using the semiconductor substrate as a seed layer, the sacrificial non-single crystal semiconductor layer and the non-single crystal semiconductor pattern are changed to a sacrificial crystalline semiconductor layer and a crystalline semiconductor pattern, respectively. The crystalline semiconductor pattern and the barrier pattern constitute an active pattern. The sacrificial crystalline semiconductor layer is removed.
摘要:
A transistor includes first and second pairs of vertically overlaid source/drain regions on a substrate. Respective first and second vertical channel regions extend between the overlaid source/drain regions of respective ones of the first and second pairs of overlaid source/drain regions. Respective first and second insulation regions are disposed between the overlaid source/drain regions of the respective first and second pairs of overlaid source/drain regions and adjacent respective ones of the first and second vertical channel regions. Respective first and second gate insulators are disposed on respective ones of the first and second vertical channel regions. A gate electrode is disposed between the first and second gate insulators. The first and second vertical channel regions may be disposed near adjacent edges of the overlaid source/drain regions.