Abstract:
An implant (1) to be implanted in bone tissue, e.g. a dental implant or an implant for an orthopedic application, comprises surface regions (4) of a first type which have e.g. osseo-integrative, inflammation-inhibiting, infection-combating and/or growth-promoting properties, and surface regions (8) of a second type which consist of a material being liquefiable by mechanical oscillation. The implant is positioned in an opening of e.g. a jawbone and then mechanical oscillations, e.g. ultrasound is applied to it while it is pressed against the bone. The liquefiable material is such liquefied at least partly and is pressed into unevennesses and pores of the surrounding bone tissue where after resolidification it forms a positive-fit connection between the implant and the bone tissue. The surface regions of the two types are arranged and dimensioned such that, during implantation, the liquefied material does not flow or flows only to a clinically irrelevant degree over the surface regions of the first type such enabling the biologically integrative properties of these surface regions to start acting directly after implantation. The implant achieves with the help of the named positive fit a very good (primary) stability, i.e. it can be loaded immediately after implantation. By this, negative effects of non-loading are prevented and relative movements between implant and bone tissue are reduced to physiological measures and therefore have an osseo-integration promoting effect.
Abstract:
Devices and methods for providing localized pressure to a region of a patient's heart to improve heart functioning. The devices include a cardiac jacket made of a flexible biocompatible material and at least one inflatable bladder disposed on an interior surface of the jacket. Inflation of the bladder causes the bladder to expand to exert localized pressure against a region of the heart. In some cases, a phase-change material is filled into the bladder as a liquid and the material solidifies at body temperature. In some cases, a positioning tool is used prior to the implantation of the jacket in order to determine effective positions for the inflatable bladder(s) to be located on the heart to improve heart functioning.
Abstract:
Disclosed are methods, devices and materials for the in situ formation of a nerve cap and/or a nerve wrap to inhibit neuroma formation following planned or traumatic nerve injury. The method includes the steps of identifying a severed end of a nerve, and positioning the severed end into a cavity defined by a form. A transformable media is introduced into the form cavity to surround the severed end. The media is permitted to undergo a transformation from a first, relatively flowable state to a second, relatively non flowable state to form a protective barrier surrounding the severed end. The media may be a hydrogel, and the transformation may produce a synthetic crosslinked hydrogel protective barrier. The media may include at least one anti-regeneration agent to inhibit nerve regrowth.
Abstract:
A penile prosthesis has an energy assembly coupled to a proximal end of a tubular body. The energy assembly has a housing enclosing a piston, a heating element, and a liquid phase change material (PCM) sealed between an interior surface of the housing and the piston. When the heating element heats the liquid PCM to a gaseous state, the piston moves in a distal direction to increase pressure in the tubular body and provide the prosthesis with erection.
Abstract:
An orthopedic brace for preventing injury to a wearer including a body having a series of liquid filled regions, the body having a first more flexible state wherein the liquid filled regions contain a liquid material and a second more rigid state wherein the liquid within the regions is hardened to a second harder state, the body transformable from the first state to the second state upon receiving a force which exceeds a predetermined value. A chemical reaction or an isothermal process can cause the phase change.
Abstract:
A method is provided, including, delivering into a heart of a patient an annuloplasty ring structure including a body portion and an adjusting mechanism configured to adjust a size of the body portion of the annuloplasty ring structure, the adjusting mechanism including a housing, and following the delivering, moving the housing with respect to the body portion. Other applications are also described.
Abstract:
An incontinence treatment system includes a urethral support extending between a first end and a second end, a first connector attached to the first end of the urethral support and a second connector attached to the second end of the urethral support, and an energy source. At least one of the first connector and the second connector is a cross-linked polymer connector having a glass transition temperature between 40-70 degrees Celsius. In this regard, the cross-linked polymer connector is stretched to provide a stretched cross-linked polymer connector having a product length. The energy source is adapted to provide energy from an extracorporeal location through intact skin to shorten the stretched cross-linked polymer connector to an implant length that is less than the product length.
Abstract:
An incontinence treatment device includes a urethral support and first and second connectors. The urethral support extends between a first end and a second end and has porosity that is configured to allow tissue in-growth through the urethral support. The first connector is attached to the first end of the urethral support and the second connector is attached to the second end of the urethral support. At least one of the first connector and the second connector is a cross-linked polymer connector having a glass transition temperature between 40-70 degrees Celsius. The cross-linked polymer connector has an initial length that is elongated to an implant length that is greater than the initial length. Means for heating the cross-linked polymer connector from an extracorporeal location through intact skin is provided, thereby shortening the cross-linked polymer connector.
Abstract:
A method of treating incontinence in a patient includes implanting a support by suspending the support from a pair of connectors attached to tissue thereby supporting a urethra of the patient with an implanted support and a pair of implanted connectors. The method additionally includes evaluating the patient for incontinence post-implantation of the support, and reducing the incontinence of the patient by shortening a length of one of the pair of implanted connectors through intact skin from a location extracorporeal of the patient.
Abstract:
An implantable ophthalmic device with flexible, fluid-filled membranes provide dynamically variable optical power to restore lost accommodation in individuals suffering from presbyopia or aphakia without moving parts or reducing the amount of transmitted light. Actuating the device causes the fluid-filled membrane to change curvature, which produces a corresponding change in optical power. For instance, squeezing the edge of the membrane causes the center of the membrane to bulge by an amount proportional to the squeezing force. Alternatively, heating or applying a voltage to the membrane may cause the liquid in the membrane to undergo a phase transition accompanied by a corresponding change in volume that causes the membrane to inflate so as to change the optical power of the device.