Abstract:
The present invention is directed to a beam control circuit and method used to minimize particle contamination in an ion implantation system by reducing the duty factor of the ion beam. In one embodiment the beam control circuit comprises a high voltage switch connected in series with a power supply and an ion source portion of the ion implantation system, wherein the switch is operable to interrupt or reestablish a connection between the power supply and an electrode of the ion source including electrodes for plasma production. The beam control circuit also comprises a switch controller operable to control the duty factor of the ion beam by controlling the switch to close before a start of ion implantation and to open after a completion of implantation or at other times when the beam is not needed, thereby minimizing beam duty and particle contamination. The beam control technique may be applied to wafer doping implantation and duty factor reduction. Protection circuits for the high voltage switch absorb energy from reactive components and clamp any overvoltages.
Abstract:
An ion source includes a first plasma chamber including a plasma generating component and a first gas inlet for receiving a first gas such that said plasma generating component and said first gas interact to generate a first plasma within said first plasma chamber, wherein said first plasma chamber further defines an aperture for extracting electrons from said first plasma, and a second plasma chamber including a second gas inlet for receiving a second gas, wherein said second plasma chamber further defines an aperture in substantial alignment with the aperture of said first plasma chamber, for receiving electrons extracted therefrom, such that the electrons and the second gas interact to generate a second plasma within said second plasma chamber, said second plasma chamber further defining an extraction aperture for extracting ions from said second plasma.
Abstract:
A contamination mitigation or surface modification system for ion implantation processes includes a gas source, a controller, a valve, and a process chamber. The gas source provides delivery of a gas, be it atmospheric or reactive, to the valve and is controlled by the controller. The valve is located on or about the process chamber and controllably adjusts flow rate and/or composition of the gas to the process chamber. The process chamber holds a target device, such as a target wafer and permits interaction of the gas with an ion beam to mitigate contamination of the target wafer and/or to modify the existing properties of the processing environment or target device to change a physical or chemical state or characteristic thereof. The controller selects and adjusts composition of the gas and flow rate according to contaminants present within the ion beam, or lack thereof, as well total or partial pressure analysis.
Abstract:
A method is provided for heating a substrate in a process chamber using a heated chuck. In accordance with the method, the substrate is lowered onto the chuck and heated to a first temperature less than a temperature of the chuck. The substrate is then raised away from the chuck, and a process is carried out on the substrate while the substrate is supported above the chuck. The substrate is then lowered back to the chuck and heated to a second temperature greater than the first temperature for further processing of the substrate.
Abstract:
The present invention is directed to aligning wafers within semiconductor fabrication tools. More particularly, one or more aspects of the present invention pertain to quickly and efficiently finding an alignment marking, such as an alignment notch, on a wafer to allow the wafer to be appropriately oriented within an alignment tool. Unlike conventional systems, the notch is located without firmly holding and spinning or rotating the wafer. Exposure to considerable backside contaminants is thereby mitigated and the complexity and/or cost associated with aligning the wafer is thereby reduced.
Abstract:
An exemplary ion source for creating a stream of ions has an aluminum alloy arc chamber body that at least partially bounds an ionization region of the arc chamber. The arc chamber body is used with a hot filament arc chamber housing that either directly or indirectly heats a cathode to sufficient temperature to cause electrons to stream through the ionization region of the arc chamber. A temperature sensor monitors temperatures within the arc chamber and provides a signal related to sensed temperature. A controller monitors sensed temperature as measured by the sensor and adjusts the temperature to maintain the sensed temperature within a range.
Abstract:
An ion shower comprises a plasma source operable to generate source gas ions within a chamber, and an extraction assembly associated with a top portion of the chamber. The extraction assembly is operable to extract ions from the top portion of the chamber. The ion shower further comprises a workpiece support structure associated with the top portion of the chamber that is operable to secure the workpiece having an implantation surface orientated facing downward toward the extraction assembly for implantation thereof. The ion shower of the present invention advantageously facilitates SIMOX processing with a high oxygen fraction, and uniform beam current for next generation processing.
Abstract:
A workpiece or semiconductor wafer is tilted as a ribbon beam is swept up and/or down the workpiece. In so doing, the implant angle or the angle of the ion beam relative to the workpiece remains substantially constant across the wafer. This allows devices to be formed substantially consistently on the wafer. Resolving plates move with the beam as the beam is scanned up and/or down. This allows desired ions to impinge on the wafer, but blocks undesirable contaminants.
Abstract:
An ion implanter includes an ion source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece, such as a silicon wafer is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. A liner has an interior facing surface that bounds at least a portion of the evacuated interior region and that comprises grooves spaced across the surface of the liner to capture contaminants generated within the interior region during operation of the ion implanter.
Abstract:
Beam current is adjusted during ion implantation by adjusting one or more parameters of an ion source. The ion beam is generated or provided by a non-arc discharge based ion source, such as an electron gun driven ion source or an RF driven ion source. A beam current adjustment amount is determined. Then, one or more parameters of the ion source are adjusted according to the determined beam current adjustment amount. The beam current is provided having a modulated beam current.